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Abstract. Bridge floor inspections are usually done visually on site. The evaluations
depend on the inspector’s skill and place a large burden on the inspector and for these
reasons are problematic. To tackle these problems, inspection by image processing tech-
nology has been developed in recent years. Automatic evaluation by image processing for
bridge floors requires feature quantity extraction of cracks. In this study, we extract-
ed three main crack feature quantities, lengths, directional components, and widths for
crack binary images converted from captured images of the bridge floor. Crack length
extraction was done using Hilditch thinning and directional component extraction was
done using directional selectivity of a two-dimensional complex wavelet packet transform
(2D-CWPT). Furthermore, crack width extraction was done by applying reconstruction
images for 2D-CWPT and machine learning.
Keywords: 2D-CWPT, Feature value extraction, Crack, Frequency analysis, Image
processing

1. Introduction. In the periodic inspection of bridge floors, visual observation of cracks
is mainly done by inspectors. The inspectors evaluate the bridge floor condition based on
crack feature quantities such as length, direction and width, and the usage environment
of the bridge. However, there are problems in that differences in evaluation occur based
on the inspector’s skill level and a large burden is placed on the inspector, with long work
hours and dangers in the work environment. To solve these problems, inspection by image
processing technology for quantitative evaluation and reduction of the inspector’s burden
has been developed in recent years [1, 2, 3, 4, 5, 6, 7].

The 2D-CWPT is one crack analysis method for bridge floor images, which is fit for
inspecting sharp edges [8, 9]. This method analyzes images into frequency components
by calculating wavelet packet coefficients, which are degrees of correlation between im-
age brightness and a wavelet, which is a wave with a specific shape. The 2D-CWPT
can analyze frequency components in more detail than the conventional discrete wavelet
transform (DWT) and has translation invariance, which is invariance of detection accura-
cy regardless of position changes. Therefore, the 2D-CWPT is suitable for high-accuracy
crack detection and can create binary images of cracks extracted from captured images
of bridge floors. A captured image and a crack binary image are shown in Figures 1(a)
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(a) Captured image (b) Binary image

Figure 1. Crack detection for bridge floors

and 1(b), respectively. For quantitative evaluation of bridge floors by image processing,
feature value extraction of cracks from binary images as in Figure 1(b) is needed.
In this study, the extracted crack feature values were lengths, directional components

and widths, and methods to extract these feature values from crack binary images were
examined. The remainder of the paper is organized as follows: In Section 2, the principle
and characteristic of the 2D-CWPT are introduced; Section 3 details extraction methods
of crack lengths; Section 4 is concerned with extraction methods of crack directional
components; Section 5 explains extraction methods of crack widths and considers the
results. Finally, Section 6 gives conclusions and closing remarks.

2. Review of the Two-Dimensional Complex Wavelet Packet Transform (2D-
CWPT). The complex discrete wavelet transform (CDWT) is compatible with the con-
ventional discrete wavelet transform (DWT), with the additional property that the sig-
nal can be completely reconstructed by high-speed processing and conversion, or inverse
transformations [10, 11]. A mother wavelet (MW) of the CDWT is constituted by two
orthogonal wavelets with real part ψR(x) and imaginary part ψI(x). Further, the scaling
function also has a real φR(x) and an imaginary φI(x) part. In the time domain, the
positions of the real and imaginary parts are shifted 1/2 sample towards each other, and
this produces the conditions for translation invariance in the complex wavelet. The CW-
PT is a method of producing improved frequency resolution of the CDWT [12] and the
2D-CWPT is a two-dimensional extension of the CWPT [13]. The 2D-CWPT, therefore,
is able to analyze detailed frequency components, unlike the conventional 2D-CDWT.
This means that the 2D-CWPT has improved resolution of directional selectivity.
The 2D-CDWT, like the 2D-CWPT, can analyze a two-dimensional signal using the

scaling function and the MW with real and imaginary parts. However, the 2D-CWPT
does not distinguish between the wavelet coefficients of the high-frequency component and
scaling coefficients of the low-frequency component, and therefore, all of the coefficients are
recursively filtered by the 2D-CWPT. Moreover, each wavelet packet coefficient obtained
by the 2D-CWPT in each analysis level (frequency band) is classified by the index (n,m) as
shown in Figure 2, where Figure 2(a) shows decomposition level j = −1, and Figure 2(b)
shows decomposition level j = −2. In the figures, all the frequency components are
divided into three major areas, in which the components of the region of max(n,m) = 2
are defined as the low-frequency components (orange color), the components of the region
of max(n,m) = 3 are defined as the intermediate-frequency components (blue color),
and the components of the region of max(n,m) = 4 are defined as the high-frequency
components (pink color).
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Figure 2. (color online) The index of each frequency component

In the figure, n represents the vertical direction of the frequency component ωy, and m
represents the horizontal direction of the frequency component ωx. If n and m are small
numbers, they represent a low frequency component. On the contrary, if n and m are
large numbers, they represent a high frequency component.

Further, the analysis level 0 index (1, 1) of the wavelet packet coefficient is expressed

as d
RI,(1,1)
0,kx,ky

. This is equal to the scaling coefficient cRI
0,kx,ky

of the conventional CDWT, and

is given by Equation (1).
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= cRI
0,kx,ky , (1)

where kx, ky show the position coordinate of the wavelet coefficient corresponding to the
horizontal frequency ωx and the vertical frequency ωy, respectively. The other wavelet

packet coefficients d
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, d
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are derived in the same way. In addition, the
wavelet packet coefficients vary in accordance with the analytical level and index. Besides
this, the directional components are given by Equations (2)-(7).
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Calculations using Equations (2)-(7) are performed in each of indexes (n,m). In addi-
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Figure 3 shows
∣

∣

∣
D

0,(n,m)
j,nx,ny

∣

∣

∣
,
∣

∣

∣
D

1,(n,m)
j,nx,ny

∣

∣

∣
obtained by Equations (6) and (7), and placed

according to each frequency component. Figure 4 shows directional components that
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shown in Figure 3. It can be seen from Figure 4 that

the 2D-CWPT of decomposition level j = −2 extracts 14 directional components in the



570 Z. ZHANG, T. SOGABE, T. AKIDUKI, T. SAITO AND K. HAYASHI

1,( , )

2| |n m
D
-

0,( , )

2| |n m
D
-

Figure 3. The location of each frequency component in 2D-CWPT
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Figure 4. The result of directional selection of 2D-CWPT using model image

outside layer, 10 directional components in the middle layer, and 6 directional components
in the inner layer, respectively.
For quantitative evaluation of bridge floors, the edge extraction of cracks was done

using crack binary image obtained from the 2D-CWPT crack detection [9]. Furthermore,
extracted feature values also include lengths, directional components and widths. Lengths
and widths are generally utilized as evaluation factors of concrete structures [4, 5]. Di-
rectional components have been found to be an important factor to evaluate slipperiness
regarding load applied to bridge floors [2]. In the following sections, new methods to
extract each feature value by using the 2D-CWPT will be explained and the results are
considered.

3. Length Extraction of Cracks. The Hilditch thinning algorithm was performed as a
preprocessing step of length extraction [1]. It converts objects in images into line segments
having 8-neighbor connectivity and 1 pixel width by means of sequential conversions of
foreground pixels applying the following conditions into background pixels.

• Condition 1: Being a foreground pixel

B(P0) = 1. (8)

• Condition 2: Being a boundary pixel
∑

k∋Nodd

{1− |B(Pk)|} ≥ 1. (9)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.12, NO.6, 2021 571

• Condition 3: Not deleting end pixels
∑

k∋N8

|B(Pk)| ≥ 2. (10)

• Condition 4: Not deleting isolated pixels

∑

k∋N8

Ck ≥ 1, Ck =

{

1 (B(Pk) = 1)

0 (B(Pk) 6= 1)
. (11)

• Condition 5: Holding connectivities

N8
C(P0) = 1 where

N8
C(P0) =

∑

k∋Nodd

D(Pk){1−D(Pk+1)D(Pk+2)}, (12)

D(Pk) = 1−B(Pk).

• Condition 6: Deleting only one side pixel of line segments having 2 pixel width.
Applying either of following conditions for all of n (n = 0 ∼ 8)

(i)B(Pn) 6= 1

(ii)B(Pn) = 0 than N8
C = 1.

(13)

However, the target pixel is P0, 8-neighbor pixels of the target pixel are P1, . . . , P8, the
pixel value of Pi (= 0 ∼ 8) is represented as G(Pi), the background pixel value is 0 and
the foreground pixel value is 1. In addition, N8 = {P1, . . . , P8}, Nodd = {P1, P3, P5, P7}
are defined. Each of the binary images before and after Hilditch thinning are shown in
Figure 5(a) and Figure 5(b), respectively. In Figure 5(a), circled numbers represent crack
labels.

(a) Binary image (b) Thinning image

Figure 5. Hilditch thinning algorithm

For each of the cracks in Figure 5(b), lengths were calculated by the following equation.

Li =
C
∑

k=1

dk. (14)

However, Li is the crack length of label i, C is the summation of the connections, d is
the Euclidean distance between the centers of connected pixels, and k is the connection
index. Extracted lengths of each of the cracks are shown in Table 1.

In Figure 5 and Table 1, it can be confirmed that calculated crack lengths are in
proportion to the actual lengths and consistent with the relative lengths of each crack.
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Table 1. Results of crack length extraction

Crack labels Crack lengths [px] Crack labels Crack lengths [px]
1 252 6 441
2 73 7 105
3 140 8 46
4 973 9 695
5 60 10 65

4. Directional Component Extraction of Cracks. In the 2D-CWPT, it has been
confirmed that there are correlations between frequency characteristics of wavelet and di-
rections of edge detection [13]. Therefore, arbitrary directional components in images can
be extracted by applying low pass or high pass filters to the conventional 2D-CWPT. Di-
rectional components are calculated from AVDC as explained in Section 2 and Equations
(15)-(21).
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However, (n,m), shown in Figure 3, are indexes to represent frequency domains contain-
ing extraction directions, DFH

l1
and DFL

l2
are low pass or high pass filters. Furthermore,

AF θ1θ2
D is defined as the directional component in the range θ1 ∼ θ2.
In this study, directional components of each of the cracks in the range of 45 degrees,

centered on the 4 directions of 0, 45, 90, 135 degrees were extracted. The histograms
of directional components of the extracted cracks of labels 4, 7 and 9 in Figure 5(a) are
shown in Figure 6, respectively. However, crack elongation directions are orthogonal to
extraction directions because the crack directional components are edge intensity values
detected for extraction directions.
In Figure 6, it can be confirmed that 4 directional components are obtained for each

crack. As an example, it is presumed from Figure 6(a) that the crack of label 4 is extended
in the 135-degree direction because the 45-degree component is the largest and inclines
to the horizontal direction because the 90-degree component is larger than the 0-degree
component. Thus, the crack elongation direction is presumed quantitatively from the
relative value of each of directional components.

5. Width Extraction of Cracks. The 2D-CWPT can create reconstructed images hav-
ing only specific frequency components by leaving only the wavelet packet coefficients of
arbitrary frequency domain and deleting the other coefficients. Frequency components of
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(a) Crack label 4 (b) Crack label 7

(c) Crack label 9

Figure 6. Directional components

cracks in the images depend on their widths. In reconstructed images, correlation val-
ues corresponding to crack widths can be obtained as brightness values because peaks in
brightness values appear largely in the area correlated to each frequency domain. As ex-
amples, model image imitated cracks and reconstructed images are shown in Figure 7(a)
and Figures 7(b)-7(d), respectively. In Figure 7(a), line segments having 1, 2, . . . , 10 pix-
el widths are drawn from the left side at a certain interval. Besides this, Figure 7(b)
represents low frequency components, Figure 7(c) represents intermediate frequency com-
ponents and Figure 7(d) represents high frequency components. From Figures 7(b)-7(d),
it is confirmed that different brightness values are obtained for each width and frequency
component.

For the extraction method of crack widths, a 2D-CWPT of decomposition level j = −4
converted 25 crack binary images into 16 layers of reconstructed images per image. In
only 4 low frequency layers of the reconstructed images, containing remarkable brightness
peaks on cracks, brightness values were extracted as factors for crack width classifica-
tion. In addition, a dataset containing the classification factors and correct labels of
crack widths obtained from benchmark images was created. Crack width extraction by
classifiers and the dataset was carried out. However, 3 classifiers, namely a decision tree,
a k-nearest neighbor classifier (k-NN) and a support vector machine (SVM), were utilized
for comparison of accuracy. Configuration of the extraction system is shown in Figure 8.
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(a) Model crack image (b) Low frequency image

(c) Intermediate frequency image (d) High frequency image

Figure 7. Reconstruction by 2D-CWPT

Figure 8. System architecture

Table 2. Accuracy and classification speed for crack width measurement

Classifier Accuracy [%] Classification speed [point/sec]
Decision tree 54.6 500000

k-NN 59.1 26000
SVM 60.7 250

Accuracies were calculated by 10-fold cross-validation utilized generally for classifier ac-
curacy validation. The accuracies and classification speeds are shown in Table 2.
In Table 2, it is shown that the SVM achieved the highest accuracy of 60.7% and the

SVM was optimal in terms of accuracy. However, the SVM is mainly utilized in 2 class
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Figure 9. (color online) Extracted crack width image

classification and needs to be combined with several SVMs. Therefore, its calculation
costs are higher than the other classifiers. As a result, its classification speed is also slow.
For this reason, in the case of analyzing a large number of images, the decision tree or
k-NN is more suitable because of their high classification speed. Besides this, a crack
image containing extracted crack widths as brightness values is shown in Figure 9. In
Figure 9, it is confirmed that the extraction system can obtain values corresponding to
crack widths.

6. Conclusion and Remarks. To construct a quantitative evaluation system for bridge
floors by image processing, extraction of crack lengths, directional components and widths
was carried out. The results obtained are as follows.

1) Crack lengths were extracted by applying Hilditch thinning. As a result, values
corresponding to the crack lengths were obtained.

2) Crack directional components were obtained by 2D-CWPT directional selectivity
and shown in histograms. Crack elongation directions can be presumed from relative
differences between directional components.

3) Crack widths were extracted by means of brightness values of 2D-CWPT recon-
structed images and machine learning. The highest accuracy was 60.7% in the case
where an SVM was utilized as a classifier.

Research on the extraction of features of cracks in concrete structures is being actively
conducted, especially in companies. Although there are few precedents for the extraction
of directional components, many extraction methods have been proposed for the length
and width. In order to evaluate the superiority of each proposed method in this study,
therefore, it is necessary to evaluate the extraction accuracy by comparing it with those
extraction methods using a large number of sample images.
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