
ICIC Express Letters
Part B: Applications ICIC International c⃝2021 ISSN 2185-2766
Volume 12, Number 5, May 2021 pp. 443–451

BLIND SOURCE SEPARATION FOR HUMAN SPEECHES
BASED ON ORTHOGONALIZATION OF JOINT DISTRIBUTION

OF OBSERVED MIXTURE SIGNALS

Takaaki Ishibashi1 and Kei Eguchi2

1Department of Information, Communication and Electronic Engineering
National Institute of Technology, Kumamoto College
2659-2 Suya, Koshi, Kumamoto 861-1102, Japan

ishibashi@kumamoto-nct.ac.jp

2Department of Information Electronics
Fukuoka Institute of Technology

3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan

Received October 2020; accepted January 2021

Abstract. In this paper, we propose a real-time BSS (Blind Source Separation) method
for human speech signals. The proposed method can estimate unknown source signals
based on orthogonalization of the joint distribution of observed mixture signals by micro-
phones. For a real-time separation, orthogonalization and scaling adjustment are applied
to a short-time frame. In this case, indeterminacy of output channel occurs at every
short-time frame. Therefore, an output channel selection is also proposed using our es-
timation method of ratio based on transfer functions. From several simulation results,
the proposed method can estimate the original source signals for a human speech noise,
a stationary noise and a convoluted human speech noise.
Keywords: Blind source separation, Independent component analysis, Orthogonaliza-
tion of joint distribution, Output channel selection, Real-time BSS

1. Introduction. Speech recognition technology [1] was improved to provide a speech
recognition engine with extremely high recognition capabilities in ideal environments, i.e.,
no surrounding noise or in a well-known noisy environment. However, it is still difficult to
achieve a desirable recognition rate in a household or office with sounds of daily activities.
Therefore, some preprocessing prior to recognition is necessary to reduce noise and to
select the target speech signal.

Several methods of noise reduction using the ICA (Independent Component Analysis)
have been proposed [2, 3, 4]. The ICA may separate unknown sources from their mixtures
without information on transfer functions, provided that the sources are statistically inde-
pendent. For instantaneous mixtures, the original sources can be fully recovered, except
for indeterminacy of scaling and permutation problems.

ICA-based applications are expected in many areas, including speech recognition tech-
nology, EEG (Electroencephalogram) data analysis, MEG (Magnetoencephalography) da-
ta analysis and image processing [5, 6, 7]. However, the device using ICA rarely exists
since ICAs are not good at real-time processing.

For real-time separation, many methods have been proposed. SS (Spectral Subtrac-
tion) [8], SAFIA (sound source Segregation based on estimating incident Angle of each
Frequency component of Input signals Acquired by multiple microphones) [9] and a mi-
crophone system with variable arbitrary directional pattern [10] can estimate the original
source signals. In these methods, the musical-noise was generated depending on the pa-
rameter. To reduce the musical-noise, a method based on high-order statistics has been
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proposed [11]. However, real-time processing is difficult with the method since multivari-
ate information is needed for the method.
This paper proposes a BSS method for human speech signals. The authors have pre-

viously reported method for extracting target human speech [12]. However, the existing
method could not solve the scaling indeterminacy. The proposed BSS is based on orthogo-
nalization and scale adjustment. In order for a real-time processing, the proposed method
can be expanded using short-time frames. In a real-time processing, a channel selection
problem occurs at each time frame. The proposed method can also be corrected with our
method of estimating the ratio of transfer functions. From the simulation results, it has
been confirmed that the proposed separation and selection method is valid.
The manuscript contains the following sections. Section 1 is the introduction of this

work. Section 2 describes the BSS method and the scaling adjustment for the separated
signals. Section 3 proposes a new BSS method for speech signals. In addition, we propose
a real-time BSS that introduces the short-time frame processing. Section 4 shows the
experimental results of sound source separation for instantaneous mixing and convolution
mixing. Section 5 briefly summarizes the results of this work.

2. Blind Source Separation. Under the situation that some sound sources are observed
by microphones, a BSS is a method to estimate the sound sources without using the
information about the sources and the transfer functions. For the BSS, ICA can separate
the sources from their mixtures when they are statistically independent.
Consider the case where sound sources are observed by microphones. We assume that

the observed mixture signals x = [x1, . . . , xm, . . . , xM ]T are generated as a linear mixture
of the sources as

x = As (1)

where s = [s1, . . . , sn, . . . , sN ]
T denotes unknown source signals and A denotes an un-

known mixing matrix whose elements are amn.
The separated signals u = [u1, . . . , un, . . . , uN ]

T , the estimate of the source signals s,
are expressed as

u = Wx (2)

where W = [w1, . . . ,wn, . . . ,wN ]
T denotes a demixing matrix. The matrix W is estimat-

ed by ICA algorithms such as natural gradient [3] and FastICA [4].
ICA can estimate the sources s except for indeterminacy of scaling and permutation

under the assumption that each component of s is statistically independent. The sepa-
rated matrix using ICA algorithms has scaling indeterminacy and permutation problem
as

WA = PD (3)

where P is a permutation matrix, in which all elements of each column and row are 0
except for one element with value 1, and D = diag[d1, . . . , dn, . . . , dN ] a diagonal matrix,
of which elements dn denote the scaling factors.
The indeterminacy of scaling is that the scale of the separated signals is not equal to

that of the source signals. The indeterminacy of permutation is that the order of the
separated signals is not equal to that of the source signals.
In order to solve the scaling indeterminacy, a method using the inverse of the demixing

matrix W−1 has been proposed as follows [13].

vn = W−1[0, . . . , 0, un, 0, . . . , 0]
T (4)

We have proved that the vn = [vn1, . . . , vnm, . . . , vnM ]T is uniquely expressed as a product
of the n-th source sn and the transfer function amn from the n-th source to the m-th
microphone as follows [14].
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vn = [a1nsn, . . . , amnsn, . . . , aMnsn]
T (5)

This means that vnm is the observation of the n-th source sn through them-th microphone.
These output signals by this approach are the same as [15]. It is also clarified that every
vnm has no ambiguity of scale in that the scaling factor is a transfer function itself, while
the scale factor dn for the separated signal un varies arbitrarily. The estimated signals
y = [y1, . . . , yn, . . . , yN ]

T are selected as follows.

yn = max
m

vnm = max
m

amnsn (6)

3. A New Blind Source Separation. The original source signals can be recovered
using ICA. However, ICAs are based on statistical independence of the sources and these
algorithms are the iterative method. It means that ICAs are not good at real-time pro-
cessing. Therefore, we propose a new BSS method for real-time process. The authors have
already proposed a fast BSS method [16]. The proposed method is applied to short-time
frame processing for real-time operation.

3.1. Principle of our BSS. In order to orthogonalize for the crossed distribution of
mixture signals, we calculate as

x̃ = Λ− 1
2ΦTx = Qx (7)

where Φ is the orthogonal matrix of eigenvectors of E[xxT ], Λ is the diagonal matrix of
its eigenvalues and Q denotes a whitening matrix. From whitening processing, the joint
distribution of the sources is recovered except for indeterminacy of rotation and scaling.

To solve the indeterminacy of rotation, we calculate the angle for the points of the joint
distribution of x̃ as

ϕ = tan−1 x̃2

x̃1

(8)

and obtain the direction histogram of ϕ.
The rotation angle θ is estimated as

θ = argmax
ϕ

hist(ϕ) (9)

and we estimate the rotation matrix R as follows.

R =

[
cos(−θ) − sin(−θ)

sin(−θ) cos(−θ)

]
=

[
cos θ sin θ

− sin θ cos θ

]
(10)

In the case which the number of the source signals is three or more, a histogram is
calculated from the observed signals by multi microphones. And a joint distribution
with a multi dimensional space is orthogonalized based on the rotation angle from the
histogram.

Therefore, our BSS method is as follows.

u(t) = Wx(t) = RQx(t) (11)

Using the proposed method, the rotated signals are recovered the original sources except
for the scale indeterminacy.

For the scale indeterminacy, we introduce Equation (4) as follows.

vn = W−1[0, . . . , 0, un, 0, . . . , 0]
T = (RQ)−1[0, . . . , 0, un, 0, . . . , 0]

T (12)

3.2. A real-time BSS. For a real-time BSS, we introduce a short-time frame separation
as

xk = [xk(0), . . . ,xk(l), . . . ,xk(L− 1)] (13)

= [x((k − 1)L), . . . ,x((k − 1)L+ l), . . . ,x(kL− 1)] (14)
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where l (= 0, . . . , L − 1) denotes a data point in the frame, L denotes a frame length, k
(= 1, . . . , K) denotes an index of the frames and K denotes a number of the frames.
Using the short-time xk, the mixing model Equation (1) and the separating model

Equation (2) are represented as

xk = Aksk (15)

uk = Wkxk (16)

Then we estimate the source signals based on whitening, rotation and scale adjustment
as

uk = RkΛ
− 1

2
k Φk

Txk (17)

vkn = W−1
k [0, . . . , 0, ukn, 0, . . . , 0]

T (18)

However, the channel selection problem occurs. This fact is also called the permuta-
tion problem. This means that the order n of the separated signal yn is not necessarily
consistent with n of the source signal sn. Therefore, the indeterminacy of permutation
must be settled to get a meaningful signal yn, before yn is output.
In order to solve for the channel selection problem, a ratio rkm of vkn is simply used

because of Equation (5) as

rkm =
vkm2

vkm1

=
ak2iski
ak1iski

=
ak2i
ak1i

(19)

The ratio rkm of vkn is expressed by the ratio of the transfer functions. Based on this
fact, indeterminacy of the output channel can be solved as follows.

yk1 =

{
vk1 if |rk1| − |rk−1,1| ≤ |rk2| − |rk−1,1|
vk2 if |rk1| − |rk−1,1| > |rk2| − |rk−1,1|

(20)

yk2 =

{
vk1 if |rk2| − |rk−1,2| ≤ |rk1| − |rk−1,2|
vk2 if |rk2| − |rk−1,2| > |rk1| − |rk−1,2|

(21)

4. Simulations. In order to verify our proposals, several simulations were carried out.

4.1. Simultaneous utterance of speakers. Sources were 6 speaker’s (3 females and
3 males) speech signals [17] in 2 seconds. The mixed signals were sampled at a rate of
8000Hz with 16bit resolution. The mixture signals were calculated by Equation (1) in
which the diagonal components have 0.9± η and non-diagonal components have 0.6± η,
η is a random value from 0 to 0.1. The simulations were carried out using 30 mixture
signals.
In Figure 1, Figure 1(a) show a male and a female speaker uttered source signals,

respectively, Figure 1(b) show mixture signals using Figure 1(a), and Figure 1(c) show
separated signals. It is found that the separated signals without the channel selection
cannot recover the source signals. Figure 1(d) are estimated signals of the male and the
female utterance, respectively, by the proposed method including the channel selection.
From the waveforms, it is found that the estimated signals can restore the source signals
in the case which the frame length is 0.1 seconds. In the case which the frame length
is shorter than 0.05 seconds as shown in Figure 1(e), the method cannot work well. It
is because that calculation of whitening and rotation was not completed in the silent
interval.
Table 1 shows NRR (Noise Reduction Rate) and processing time. The NRR is defined

as follows [18].

NRR =
1

2

2∑
n=1

(SNROn− SNRIn) , SNROn = 10 log10
|hnnsn|2

|hnisi|2
, SNRIn = 10 log10

|annsn|2

|anisi|2
(22)
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where SNROn and SNRIn are the output SNR and the input SNR, respectively, and n ̸= i.
hji is the element in the jth row and the ith column of the matrix H = WA. The SNRs
are calculated under the assumption that the speech signal of the undesired speaker is
regarded as noise. The processing time is the calculated time for whitening, rotation, and
channel selection. From these results, it is found that the proposed method functions well

(a) Source signals

(b) Mixture signals

(c) Separated signals (frame length: 0.1s)

(d) Estimated signals (frame length: 0.1s)

(e) Estimated signals (frame length: 0.05s)

Figure 1. Waveforms of source signals to estimated signals under a speech noise

Table 1. NRR and processing time under a speech noise

Frame length (point) NRR Processing time
2s (16000) 53.2651dB 0.1003s
1s (8000) 31.2439dB 0.0542s
0.5s (4000) 31.6139dB 0.0278s
0.2s (1600) 15.8473dB 0.0113s
0.1s (800) 14.7130dB 0.0059s
0.05s (400) 3.9322dB 0.0032s
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in the case which the frame length is longer than 0.1 seconds. The reason for this result
is that whitening and rotation processing work accurately when the frame length is long.

4.2. Utterance under stationary noise. The simulations were carried out using 30
mixture signals generated by 6 speaker’s (3 females and 3 males) speeches [17] and 5
pattern of car noises [19].
In Figure 2, Figure 2(a) show a male speaker uttered source signal and a stationary noise

of a car, Figure 2(b) show mixture signals, Figure 2(c) show separated signals without
our channel selection, and Figure 2(d) show estimated signals of the male’s speech and
the noise, respectively, by the proposed method. From these waveforms, it is found that
the proposed separation and selection method can estimate the original sources when the
frame length is 0.1 seconds. When the frame length was 0.05 seconds, the estimated
signals as shown in Figure 2(e) could not be restored. This is due to whitening failure.

(a) Source signals

(b) Mixture signals

(c) Separated signals (frame length: 0.1s)

(d) Estimated signals (frame length: 0.1s)

(e) Estimated signals (frame length: 0.05s)

Figure 2. Waveforms of source signals to estimated signals under a sta-
tionary noise
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Table 2 shows NRR and processing time. From the results, it is also found that the
proposed method is functional well in the case that the frame length is longer than 0.1
seconds.

Table 2. NRR and processing time under a stationary noise

Frame length (point) NRR Processing time
2s (16000) 40.9086dB 0.0986s
1s (8000) 38.6070dB 0.0555s
0.5s (4000) 30.2176dB 0.0277s
0.2s (1600) 17.2991dB 0.0113s
0.1s (800) 16.2506dB 0.0059s
0.05s (400) 3.1983dB 0.0031s

4.3. Virtual room with reflections and reverberation. In order to verify that the
proposed method operates in a real environment, we carried out an experiment to estimate
the original source signals using convolutional mixed signals.

A method for generating impulse functions is provided in a virtual room [20]. We set
a reverberation time 0.2 seconds in the virtual room with a length of 4 m, a width of
5 m, and a height of 3 m. In the virtual room, the source signals and the microphones
were located as shown in Figure 3. The height of all sources and microphones are set
1.5 meters from the human mouth and ears are a height of about 1.5 meters. Using the
virtual room, mixed convolutional signals were created using the impulse functions and
the source signals.

2 m

2
 m

microphones

(height : 1.5 m)

source signals

(height : 1.5 m)

5 m

4
m

(room height : 3 m)

1 m

45°

45°2
0

cm

Figure 3. Placement of source signals and microphones in the virtual room

The waveforms of the estimated signals are shown in Figure 4. In the convolutional
mixing, the arrival time of the sound wave was deviated, so that the estimation accuracy
was lowered. However, it is found that the waveforms are very similar to the signals of
the speaker’s speech, and when the speech was heard, it was confirmed that the noise was
removed well. Furthermore, the problem, that the existing method could not be solved
by the scaling indeterminacy, could be solved by the proposed method.

5. Conclusions. This paper proposes a real-time blind source separation method for
acoustic signals. For a real-time separation, we calculate orthogonalization for a short-
time frame. In order to solve the problem of the channel selection, we also propose
the correction method based on the estimated ratio of the transfer functions. From the
simulation results, the proposed method can estimate the original source signals not only
for human speech noise but also for stationary noise. In the convolutional mixture, it is
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(a) Source signals

(b) Mixture signals

(c) Estimated signals (frame length: 0.5s)

Figure 4. Waveforms of source signals to estimated signals under reverberation

found that the waveforms are very similar to the speaker’s speech and the noise was well
removed.
The proposed method processes in a short frame. Therefore, under the condition that

the moving sound source can be regarded as a fixed sound in a short time, it is expected
that it can be separated by this algorithm. As in the frequency domain ICA, it can be
extended to processing using spectrograms. By using the spectrogram processing, it is
expected that the separation performance will be further improved for the convolution
mixture signals.
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