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Abstract. This paper presents an improved approach to the novel multi-grained named
entity recognition model. Unlike conventional approaches which consider named entity
recognition as sequential labeling, our model examines all possible named entity candi-
dates with different length in Detector component and classifies them into predefined
categories in Classifier component. To boost our performance, we improve the model by
applying pretrained BERT embeddings, which is the state-of-the-art context representa-
tion method. Realizing the imbalance of positive and negative samples of named entity in
the English and Vietnamese dataset, we replace the normal Cross Entropy loss with Focal
Loss to solve this issue. Our experiments show that our proposed method is effective in
multi-grained as well as single-grained entities.
Keywords: Nested named entity, BERT, Focal Loss, Multi-grained named entity

1. Introduction. Named Entity Recognition (NER) is the task of identifying and label-
ing chunks of text into categories such as organization, person, and time. This task can
be divided into 2 types: non-overlapped (single-grained) NER and nested (multi-grained)
NER. While flat NER gets attention from the beginning, nested NER task (illustrated in
Figure 1), whose entities are encapsulated over each other, has been focused on recently.

The conventional approach to flat NER is sequential tagging, which includes various
approaches like Conditional Random Field (CRF) by Ratinov and Roth [1] or LSTM-
based approach by Lample et al. [2]. These methods are not suitable with nested named
entity due to the assumption that entity mentions do not overlap each other.

There are various approaches in attempt to solve the nested NER task. One of the ini-
tial approaches was proposed by Zhou et al. [3] that relied on rule-based method to detect
overlapping mentions. Alex et al. [4] introduced several methods that incorporate Con-
ditional Random Fields (CRFs) into NER task. However, these methods cannot handle
overlapping entities of the same type. Discriminative constituency parser method pro-
posed by Finkel and Manning [5] transforms each sentence into a tree, with constituents
for each named entity. Wang and Lu [6] proposed a hypergraph-based approach to dis-
cover all possible entities. Wang et al. [7] introduced a transition-based approach, which
parses entities into trees. Those methods which only aim to handle nested named entity
perform inefficiently in flat NER task.

For Vietnamese, most of the previous works modify sequential tagging to be suitable
with NER task. In [8], the authors proposed a deep learning model with a stack of multiple
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Figure 1. Examples of nested named entity in English and Vietnamese

BI-LSTM-CRF components. Additionally, they add linguistic information such as POS
tag, chunk tag to enhance the performance. In [9], Pham compared among CRF-based
NER models which are trained on each nested level and all nested levels.
Xia et al. [10] proposed an integrated framework named Multi-Grain Named Entity

Recognition (MGNER), which detects all possible entities in various granularities and
attaches attention mechanism for classification. This approach performs well not only on
nested named entity but also on non-overlapping named entities. However, the dominance
of negative samples over positive samples in dataset results in the bias of model over this
class and the difficulty of classifying hard samples. To solve this drawback, we propose to
use Focal Loss by Lin et al. [11] instead of Cross Entropy in MGNER. This loss function
is initially utilized to solve the foreground-background class imbalance encountered in
object detection, which is similar to our issue. In addition, we apply pretrained BERT
embeddings in Devlin et al. [12] instead of pretrained ELMo embeddings in Peters et al.
[13] as a result of truly bidirectional contextual information. Adapting the advantages
of MGNER model, we also improve it and achieve better results in both English and
Vietnamese datasets. Besides, our approach outperforms latest approaches for nested
named entity recognition on Vietnamese dataset. Our contribution can be summarized
as follows.

• We replace ELMo in the MGNER model by Xia et al. [10] with BERT to take
advantages of the better contextual representations.
• We enhance MGNER model by Xia et al. [10] by applying the Focal Loss instead of
Cross Entropy to solve the imbalance between positive and negative samples.
• We prove the effectiveness of our proposed method on English and Vietnamese data.

The rest of this paper is organized as follows. We present our model (Section 2), give
information about our datasets, implementation and report the results (Section 3) and
finally conclude and propose future works (Section 4).

2. Proposed Model. Our model consists of 2 main components: the Detector and the
Classifier. The Detector detects all possible named entities and passes these entities as
input of the Classifier. Then, they are classified into predefined categories in the Clas-
sifier. The Detector is composed of 3 sub-components: Word Processor attaining word
level information, Sentence Processor getting contextual information of sentence, Detec-
tion Network considering the entity proposals to be positive or negative. The Classifier
also contains 3 sub-components: Word Processor being the same as one in the Detector,
Entity Processor learning entity features, Classification Network labeling proposals into
predefined categories. In addition, we apply pretrained BERT embeddings by Devlin et al.
[12] in both the Detector and the Classifier to obtaining contextual representations. Be-
sides, Focal Loss by Lin et al. [11] is utilized in Detection Network to solve the imbalance
of positive and negative samples and to enable model to concentrate on hard-classified
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entities. Self attention method is adopted in Entity Processor to let the entities learn the
related context. To enhance the learning speed, some features are shared between the
Detector and the Classifier: the pretrained word embeddings, the language model and
the Sentence Processor’s output in the Entity Processor.

2.1. The Detector. The Detector outputs a set of potential entities for every input
sentence. As seen in Figure 2, the Detector has three modules: the Word Processor, the
Sentence Processor and the Detection Network. In general, the Word Processor generates
a word representation for each token in an input. Word representations are fed into the
Sentence Processor to produce contextual sentence presentation. Then, for every input
sentence, the Detection Network examines word segments surrounding every token for the
possibility thereof to be an entity, and outputs those that qualify.

Figure 2. Proposed model

2.1.1. Word Processor. The Word Processor constructs the word representation for every
token in an input sentence. Each token k yields a representation as:

xk = [wk; pk; ck] (1)

wk is the pretrained word embeddings obtained from language model with a dimensionDw.
pk is the POS tag if it exists and ck is the character information. Character embeddings are
input of a bidirectional LSTM with a hidden size Dcl, whose final hidden states backward
and forward are concatenated as the character information ck.

2.1.2. Sentence Processor. The word representation is fetched through a bi-LSTM layer

to get the contextual information of sentence. For each token, the hidden states
−→
h of

forward LSTM layer are concatenated with the hidden states
←−
h of backward LSTM to

build the hidden states hk. The dimension of word LSTM hidden states is Dwl.
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−→
hk = LSTM fw

(
xk,
−−→
hk−1

)
←−
hk = LSTM fw

(
xk,
←−−
hk−1

)
(2)

hk =
[−→
hk;
←−
hk

]
As the emergence of pretrained BERT embeddings by Devlin et al. [12] and their

effectiveness, we concatenate pretrained BERT embedding of token tk with hidden states
hk.

hk =
[−→
hk;
←−
hk;BERT k

]
(3)

The pretrained BERT embeddings by Devlin et al. [12] use the Transformer framework
by Vaswani et al. [14] which contains multiple encoders. Because each encoder attains
different levels of contextual information, we decide to utilize stack of 3 hidden states of
3 encoders to generate BERT k.

BERT k = θ
l=L−1∑
l=1

ujh
L,M
k,l (4)

θ is a scale parameter showing how important pretrained BERT embeddings are. L is
the number of utilized encoders. Vector u = [u0; . . . ;uL−1] represents softmax-normalized

weights that are suitable for each hidden state. hL,M
k,l is the hidden state of encoder l at

time k. At last, we apply a bi-LSTM layer to attaining contextual information of sentence.
The dimension of this layer is Dsl and its forward and backward hidden states of each
word are concatenated as fk ∈ R2Dsl .

2.1.3. Detection Network. Surrounding each token position in an input sentence, the De-
tection Network generates at most R word segments, called proposals. Every input sen-
tence is considered to be a sequence of tokens, starting from index 1. Proposals with
invalid token index, like 0 or larger than the length of input sentence, will be deleted. For
example, in Figure 3 if we choose R = 6, token t3 will generate a set of 6 proposals: (t3),
(t3, t4), (t2, t3, t4), (t2, t3, t4, t5), (t1, t2, t3, t4, t5), (t1, t2, t3, t4, t5, t6).

Figure 3. All possible entity proposals with R = 6 and position at t3

Every proposal in the proposal set of each token is simultaneously calculated both the
probability of it to be an entity and a non-entity. This calculation is accomplished by a
fully connected layer with a two-class softmax function:

sk = softmax (fkWp + bp) (5)

where Wp ∈ R2Dsl×2R and bp ∈ R2R are weights and the bias for the entity proposal layer;
sk contains 2R scores including R scores for being an entity and R scores for not being
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an entity at position k. The Focal Loss is implemented as follows:

Lp = −
K∑
k=1

R∑
r=1

αty
r
k(1− srk)

γ log(srk) (6)

yrk presents proposal type r at position k. srk is the predicted probability of being type r
of proposal at position k. αt is the scale parameter for different types:

αt =

{
α, if the proposal is entity

1− α, if the proposal is not entity
(7)

With α ∈ [0, 1], αt helps us solve the imbalance between positive samples and negative
samples. In reality, the number of negative entities is much larger than positive entities,
which motivates us to choose α < 0.5. Additionally, (1− srk)

γ is small with easy-classified
samples which have high probability. Therefore, our model can concentrate on analyzing
hard-classified samples. The Focal Loss solves issues that Cross Entropy cannot.

2.2. The Classifier. The Classifier inspects the outputs of the Detector to place them in
predefined categories. For non-overlapping entities, we utilize Non-Maximum Suppression
(NMS) algorithm in Neubeck and Gool [15] to filter. In general, NMS picks out proposals
with the highest probability and deletes conflicting ones. The result of NMS is fed into
the Classifier as input.

We enhance the significance of context using a self-attention mechanism to proper-
ly categorize every entity proposal. The framework of the Classifier consists of three
components: Word Processor, Entity Processor and Classification Network. The Word
Processor, similar to the Detector’s, generates word representations for the proposals.
Next, the Entity Processor transforms the word representation and sentence representa-
tion from the Sentence Processor of the Detector to produce entity representation. Finally,
the Classification Network pigeonholes proposals into predefined categories.

2.2.1. Word Processor. The architecture of the Word Processor is precisely the same as
that of the Detector. The word-level embedding is also the concatenation of pretrained
word embeddings and POS tag if it exists. Therefore, this embedding is directly trans-
ferred from the Detector to optimize computational resources. Character-level informa-
tion is obtained the same way as it is in the Detector. However, the training process
for character-level information completed separately. Ultimately, word representation for
each proposal, likewise, is the concatenation of the word-level embedding and character-
level information.

2.2.2. Entity Processor. The first two layers of the Entity Processor is similar to those
of the Sentence Processor in the Detector. The obtained word representation is fed into
a bidirectional LSTM with hidden size Dwl and the hidden states are concatenated with
BERT embeddings as entity features. Subsequently, another bidirectional LSTM called
Entity LSTM is applied to capturing sequence information among the entity words. The
last hidden states are concatenated to create the entity representation e ∈ R2Del . In
addition, the sentence representation in the Sentence Processor of the Detector is utilized
and transferred directly to the Classifier as context feature C.

To improve performance, we always consider context information in the learning pro-
cess. As an attempt to emphasize the context surrounding entity proposals, we propose
a self-attention mechanism to highlight relevant context words and learn more accurate
context information. Both the entity representation e and context feature C are input for
the self-attention layer to yield a vector of attention weights a as output:

a = softmax
(
CWeT

)
(8)
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where W ∈ R2Dsl×2Del is a weight matrix for the self-attention layer, and a is the self-
attention weight on different context words. To strengthen the focus on entity-related
context, the attentive vector Catt is calculated as the attention-weighted context:

Catt = a ∗ C (9)

In addition, we must realign the shape of the output as the length of Catt varies for
different inputs. To this end, we apply an Attention LSTM with the hidden dimension
Dml. The concatenation of the last hidden states in the forward and backward LSTM
layer as the context representation m ∈ R2Dml . The context representation and the
entity representation are concatenated together as a context-aware entity representation
o = [m; e].

2.2.3. Classification Network. To classify obtained entity representation o into predefined
categories, we use a two-layer fully connected neural network:

p = softmax (Wc2(σ(oWc1 + bc1)) + bc2) (10)

in which, Wc1 ∈ R(2Dml+2Del)×Dh , bc1 ∈ RDh , Wc2 ∈ R2Dc1×(Dt+1), bc2 ∈ RDt+1 are the
weights for this fully connected neural network, and Dt is the number of entity types. We
add a type for non-entity; hence there are (Dt + 1) types. The square hinge-ranking loss
is used:

Lc =
∑

yw∈Yw

max(0,∆+ pyw − pyr)
2 (11)

where pw is the probability for the wrong labels yw, pr is the probability for the right label
yr, and ∆ is a margin. The square hinge-loss accentuates the probability for the right
label over the wrong labels, thus improving the accuracy.

3. Experiments.

3.1. Datasets. For English, we use the fine-grained nested dataset NNE by Ringland et
al. [16] over the full Wall Street Journal portion of the Penn Treebank. This dataset has
260,386 mentions of 114 entity types, which include named entities, all time and date and
numerical entities with up to 6 layers of nesting. In NNE dataset, for 118,525 top-level
entity mentions, 47,020 (39.6%) do not have any nested structure embedded. It is worth
noting that one entity can be labeled with multiple types.
To evaluate our model in Vietnamese, we use the dataset VLSP-2018 by Huyen et al.

[17], which has both nested and non-overlapping entities. There are four types of entities:
person, organization, location and miscellaneous, nested in at most 3 layers. Due to
the nature of Vietnamese, the same word can be labeled differently or not labeled as an
entity in different context. In addition, to simplify the task, we segmented and tokenized
the dataset, using Vietnamese toolkit1 , to make sure each word only takes up on token
position. This dataset does not contain POS tags, so we have to add POS tags to it.
The corpora statistics for both datasets can be seen in Table 1. As presented, most

entites have the length less than or equal to 6; thus we choose R as 6.

3.2. Implementation. For the English dataset, we keep all hyper-parameters the same
as that of Xia et al. [10] except: BERT k is generated by a stack of 3 hidden states of the
9th encoder, the 10th encoder and the 11th encoder of pretrained BERT embeddings from
Wolf et al. [18], α = 0.65 and γ = 2.
For the Vietnamese dataset, we have a few modifications of hyper-parameters: BERT k

is generated by the same ordered hidden states but trained on multi-lingual language
including Vietnamese by Wolf et al. [18] and its dimension is 768, the pretrained word
embeddings are from fastText in Grave et al. [19] with dimension 300, α = 0.65, γ = 2.
To compare the effectiveness between pretrained BERT embeddings and pretrained ELMo

1http://www.clc.hcmus.edu.vn/?page id=471&lang=en
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Table 1. Datasets statistics

Dataset
NNE VLSP-2018

train dev test train dev test

Sentences with NE
Total 35279 1603 3050 8980 2968 3886
overlap 24402 1043 2074 1318 558 443

Entities

Total 248136 10463 21196 20440 7221 8131
Overlap 116606 4584 9765 1657 700 510

Length ≤ 6 247155 10429 21075 20046 7062 8036
Max length 15 14 14 15 11 11

embeddings, we also use the pretrained ELMo embeddings trained on Vietnamese in Che
et al. [20].

3.3. Evaluation metrics. We evaluate named entity recognition with 3 metrics: Recall
(R), Precision (P), and F1-score (F1):

P =
number of correctly predicted named entities

number of predicted named entities
(12)

R =
number of correctly predicted named entities

number of reference named entities
(13)

F1 =
2× P ×R

P +R
(14)

3.4. Result and analysis. For English, because the MGNER model is state-of-the-art
in NER task and its performance was compared with other old models by Xia et al. [10],
we just show our improvement for the MGNER model. We can see that our model with
BERT and Focal Loss gets the better result of F1 score compared to that of our model
with ELMo and Focal Loss by 1.1% in Table 2. Pretrained BERT embedding shows its
effectiveness compared to pretrained ELMo embedding as a result of truly bidirectional
contextual information and the solution of out-of-vocabulary by subwords. Besides, we
also conduct experiments on the VLSP-2018 dataset and our model with BERT and
Focal Loss outperforms the latest feature-based model by Pham [9]. Additionally, we also
compare the effectiveness between Focal Loss and Cross Entropy in the Detector. The
Detector with Focal Loss gets the better result of F1 score with 97.31% compared to F1
score 95.62% of Cross Entropy on NNE dataset in Table 3. The same result appears
in VLSP-2018 dataset. It proves that Focal Loss is effective in solving imbalance data
between negative and positive entities.

Table 2. Results on NNE and VLSP-2018 datasets

Model
NNE VLSP-2018

P R F1 P R F1
Feature-based model – – – 78.0 71.69 74.70

MGNER (ELMo + Focal Loss) 89.56 78.23 83.51 72.2 68.9 70.51
MGNER (BERT + Focal Loss) 90.26 79.62 84.61 79.95 78.35 79.14

Table 3. Results of the Detector on NNE and VLSP-2018 datasets

Model
NNE VLSP-2018

P R F1 P R F1
MGNER (BERT + Cross Entropy) 92.63 98.81 95.62 69.54 92.80 79.51
MGNER (BERT + Focal Loss) 97.29 97.33 97.31 90.79 88.47 89.61
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In Table 4, we show the performance of our model and feature-based model in non-
overlapping entities and nested named entities. Our model gets better results in both
non-overlapping and nested entities proving the effectiveness of our proposed method
thanks to BERT and Focal Loss.

Table 4. Results on non-overlapping and overlapping entities in VLSP-2018

Model
Overlapping Non-overlapping

P R F1 P R F1
Feature-based model 44.56 82.51 57.87 73.95 79.33 76.55

MGNER (BERT + Focal Loss) 95.51 45.69 61.72 89.36 80.54 84.72

4. Conclusions. This paper presents improvements for the MGNER model, which lever-
ages BERT and Focal Loss to enhance performance. The replacement of BERT over ELMo
enables the model to get the truly bidirectional contextual information and to solve out-
of-vocabulary issue with subwords. Focal Loss solves the imbalance between positive and
negative samples, which allows the model to focus on hard-classified samples. Our model
shows improvement compared to the MGNER model in NNE dataset and outperforms
other models in the VLSP-2018 dataset.
In the future, we will try to streamline our model in order to decrease the time training

and find effective methods to improve it.
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