
ICIC Express Letters
Part B: Applications ICIC International c⃝2021 ISSN 2185-2766
Volume 12, Number 3, March 2021 pp. 243–253

OBSERVER-BASED CONTROLLER DESIGN FOR NETWORKED
CONTROL SYSTEMS WITH INDUCED DELAYS

AND DATA PACKET DROPOUTS

Luo Zhang, Mou Chen and Bei Wu

College of Automation Engineering
Nanjing University of Aeronautics and Astronautics

No. 29, Jiangjun Avenue, Jiangning District, Nanjing 211106, P. R. China
zhangluo1990@sina.com; { chenmou; wubei }@nuaa.edu.cn

Received August 2020; accepted November 2020

Abstract. This paper is concerned with the observer-based controller design problem
for networked control systems (NCSs) with both network-induced delays and data packet
dropouts which are caused by non-ideal network environment. The system states are
assumed to be unavailable, then an observer is designed to estimate the states of the
system and a sufficient condition for the observer-based controller design of NCSs is
derived in the form of linear matrix inequalities (LMIs). Finally, a numerical example
is given to illustrate the effectiveness of the proposed control method.
Keywords: Networked control systems, Network-induced delays, Packet dropouts, Ob-
server-based controller, Linear matrix inequality

1. Introduction. NCSs have many advantages when compared with traditional control
systems, such as extensibility, easy maintenance, weight reduction, and high reliabili-
ty [1, 2]. However, because of the complicated work environment and the introduction
of communication networks, many challenges exist for the analysis of NCSs, such as
network-induced delays and data packet dropouts. In practical systems, especially net-
worked control systems, system states usually cannot be measured or partially cannot be
measured. In order to solve this problem, output feedback control or state observer-based
control is usually adopted. In recent years, output feedback controller design problem has
been widely investigated. Compared with static output feedback control, observer-based
output feedback controller design has less been studied and is more complicated. There-
fore, it is very necessary to study the observer-based stabilization problem for NCSs with
induced-delays and packet dropouts.

Due to the network environment of NCS, network-induced delays inevitably exist and
may affect the system performance. Up to now, many achievements have been obtained.
In [3], a kind of delay-dependent H∞ controller design was studied for a class of uncertain
networked control systems. A guaranteed cost controller was designed for uncertain time-
delay network control systems in [4]. A new predictive control design scheme was proposed
for a class of globally Lipschitz nonlinear continuous NCSs incorporating large time-
varying transmission delays in [5]. Except for time delays, data packet dropout problem
is also an important factor which can influence the system performance.

In recent years, data packet dropout problem has received more and more attentions
and a lot of research productions have been obtained. In [6, 7], data packet dropout was
modeled as Bernoulli process, and then data missing process was modeled as stochastic
process with certain probability distributions. Except for Bernoulli process, Markovian
process method was also utilized to model data packet dropouts process, such as in [8, 9].
In most of the above literature, system states can be measured while in practical systems,
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it is usually unattainable. So state observer-based control problem can be applied for
NCSs with unmeasurable states.
Different from static state feedback control and static output feedback control, observer-

based control problem is more difficult to study. In [10], observer-based controller design
for NCS was studied in the presence of output quantisation and random communication
delay. A design scheme was proposed in [11] for the observer-based output feedback
controller to stabilize the closed-loop networked system with random sensor delays. In
[12], observer-based control problem was investigated for a class of switched NCSs with
missing data. However, all the above literature did not consider both induced delays and
data packet dropouts.
Motivated by the discussions above, this paper mainly talks about the observer-based

controller design problem for NCSs subject to induced delays and packet dropouts. In this
paper, we model the data packet dropouts as Bernoulli process and the closed-loop system
can be seen as a kind of stochastic system. Then, a sufficient condition is established
for stochastic stability analysis and observer-based controller is obtained by Lyapunov-
Krasovskii stability theory.

2. Problem Statement and Preliminaries. The structure of NCSs in this paper is
shown in Figure 1. The plant to be controlled is a discrete-time system with the following
form: {

x(k + 1) = Ax(k) +Bu(k)
y(k) = Cx(k)

(1)

where x(k) ∈ Rn, u(k) ∈ Rm, y(k) ∈ Rp are the system states vector, control input signals,
and measured output. A, B, C are known real matrices with appropriate dimensions. In
this paper, the following assumptions are needed.

Assumption 2.1. Due to the network environment, x(k) is usually difficult to measure,
so in this paper, we assume that all the system states cannot be measured.

Assumption 2.2. As is shown in Figure 1, networked-induced delays and data packet
dropouts exist in both sensor-to-observer channel and controller-to-actuator channel.

Assumption 2.3. [13] The sensor is time-driven, and the controller and actuator are
event-driven.

y(k)

y(k)x̂(k)û(k)

u(k)

Figure 1. NCSs model

In this paper, network-induced delay in sensor-to-observer channel is denoted as d(k)
and the delay in controller-to-actuator is denoted as τ(k). Networked-induced delays are
time varying and bounded satisfying: 0 ≤ d(k) ≤ d̄, 0 ≤ τ(k) ≤ τ̄ , where d̄ and τ̄ are
known positive integers.
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Data packet dropout process is assumed to be random in this manuscript. Normally,
in some existing papers, Bernoulli process is introduced to represent the random packet
dropout [10, 14]. Bernoulli processes α(k) and β(k) denote the packet dropout from sensor
to the observer and controller to the actuator, respectively. α(k) takes values in {0, 1}
and satisfies [6].

prob{α(k) = 1} = E{α(k)} = ᾱ, 0 ≤ ᾱ ≤ 1, prob{α(k) = 0} = 1− E{α(k)} = 1− ᾱ

var{α(k)} = E
{
(α(k)− ᾱ)2

}
= (1− ᾱ)ᾱ = α2

1 (2)

Similarly, β(k) represents the data packet dropout from controller to actuator and satisfies
[6].

prob{β(k) = 1} = E{β(k)} = β̄, 0 ≤ β̄ ≤ 1, prob{β(k) = 0} = 1− E{β(k)} = 1− β̄

var{β(k)} = E
{(
β(k)− β̄

)2}
=

(
1− β̄

)
β̄ = β2

1 (3)

When α(k) = 1, β(k) = 1, we mean that the delayed signals are transmitted successfully.
On the contrary, α(k) = 0, β(k) = 0 means the data is missing. Thus the measurement
ȳ(k) with induced delay and packet dropout can be expressed as

ȳ(k) = α(k)y(k − d(k)) (4)

The control input u(k) can be obtained as

u(k) = β(k)û(k − τ(k)) (5)

According to Assumption 2.1, in this paper, a state observer is designed in the following:

x̂(k + 1) = Ax̂(k) +Bû(k) + L(ȳ(k)− ŷ(k))

ŷ(k) = Cx̂(k) (6)

Then the observer-based controller can be designed as follows:

û(k) = Kx̂(k) (7)

where K and L are the gain matrices to be designed later.
In this paper, the state observer error is defined as e(k) = x(k)− x̂(k), considering (1),

(4), (5) and (6), we have

e(k + 1) = x(k + 1)− x̂(k + 1) = Ax(k) + Bu(k)− Ax̂(k)−Bû(k)− L(ȳ(k)− ŷ(k))

= (A+BK − LC)e(k) + (LC −BK)x(k) + β(k)BKx(k − τ(k))

−α(k)LCx(k − d(k))− β(k)BKe(k − τ(k)) (8)

For the sake of analysis in the following section, we have the following conversion:

α(k) = ᾱ− (ᾱ− α(k)), β(k) = β̄ −
(
β̄ − β(k)

)
(9)

Then (8) can be rewritten as

e(k + 1) = (A+BK − LC)e(k) + (LC −BK)x(k) +
(
β̄ −

(
β̄ − β(k)

))
BKx(k − τ(k))

− (ᾱ− (ᾱ− α(k)))LCx(k − d(k))−
(
β̄ −

(
β̄ − β(k)

))
BKe(k − τ(k)) (10)

Similarly, the closed-loop system can be obtained as

x(k + 1) = Ax(k) +
(
β̄ −

(
β̄ − β(k)

))
BK(x(k − τ(k))− e(k − τ(k))) (11)

Based on the above discussions, we have the following augmented system

η(k + 1) = Āη(k) + Ā1η(k − τ(k)) + Ā2η(k − d(k)) (12)

where

η(k) =
[
xT (k) eT (k)

]T
, Ā =

[
A 0

LC −BK A+BK − LC

]
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Ā1 = β(k)

[
BK −BK
BK −BK

]
, Ā2 = α(k)

[
0 0

−LC 0

]
The following definition and lemmas are introduced to develop our main results.

Definition 2.1. [10] The closed-loop system (12) is stochastically stable if for every initial
condition x0 ∈ Rn, there exists a scalar υ > 0 such that:

E

{
∞∑
k=0

∥η(k)∥2
}

≤ υE
{
∥η(0)∥2

}
Lemma 2.1. [10] Let V (η(k)) be a Lyapunov functional. If there exist real scalars γ1 > 0,
γ2 > 0, ψ1 < 0 and 0 < ψ2 < 1 such that

γ1∥η(k)∥2 ≤ V (η(k)) ≤ γ2∥η(k)∥2

and

E{V (η(k + 1)) | V (η(k))} − V (η(k)) ≤ ψ1 − ψ2V (η(k))

then the sequence η(k) satisfies

E
{
∥η(k)∥2

}
≤ γ2
γ1

∥η(0)∥2 (1− ψ2)
k +

ψ1

η1ψ2

Lemma 2.2. [15] For a given matrix W = W T > 0 ∈ Rn×n, two positive integers γ̄1, γ̄2
satisfy γ̄2 > γ̄1 ≥ 1 and a vector function x(i) → Rn, then the following inequality holds:

− (γ̄2 − γ̄1 + 1)

γ̄2∑
i=γ̄1

xT (i)Wx(i) ≤

[
γ̄2∑

i=γ̄1

x(i)

]T

W

[
γ̄2∑

i=γ̄1

x(i)

]

Lemma 2.3. [16] Given the symmetric matrix Θ =

[
Θ11 Θ12

ΘT
12 Θ22

]
, the following state-

ments are equivalent:
1) Θ < 0
2) Θ11 < 0, Θ22 −ΘT

12Θ
−1
11 Θ12 < 0

3) Θ22 < 0, Θ11 −Θ12Θ
−1
22 Θ

T
12 < 0

3. Main Results. In this section, by using Lyapunov-Krasovskii theory and LMIs tech-
nology, an observer-based controller is designed to ensure the stability of the closed-loop
system.

Theorem 3.1. For the given scalars 0 ≤ ᾱ ≤ 1, 0 ≤ β̄ ≤ 1, εi > 0, i = 1, 2, 3, 4, 5, 6, the
closed-loop system is stochastically stable by the observer-based controller (6) and (7) if
there exist matrices P1 > 0, P2 > 0, Q1 > 0, Q2 > 0, R > 0, S1 > 0, S2 > 0, T > 0, K,
L satisfying the following linear matrix inequality:

Φ̄ Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

∗ Θ1 0 0 0 0 0 0 0
∗ ∗ Θ2 0 0 0 0 0 0
∗ ∗ ∗ Θ3 0 0 0 0 0
∗ ∗ ∗ ∗ Θ4 0 0 0 0
∗ ∗ ∗ ∗ ∗ Θ5 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ Θ5 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ6 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ Θ6


< 0 (13)
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where

Φ̄ =



Φ̄11 Φ̄12 Φ̄13 Φ̄14 Φ̄15 Φ̄16 Φ̄17 Φ̄18

∗ Φ̄22 Φ̄23 Φ̄24 Φ̄25 Φ̄26 Φ̄27 Φ̄28

∗ ∗ Φ̄33 Φ̄34 Φ̄35 Φ̄36 Φ̄37 Φ̄38

∗ ∗ ∗ Φ̄44 Φ̄45 Φ̄46 Φ̄47 Φ̄48

∗ ∗ ∗ ∗ Φ̄55 Φ̄56 Φ̄57 Φ̄58

∗ ∗ ∗ ∗ ∗ Φ̄66 Φ̄67 Φ̄68

∗ ∗ ∗ ∗ ∗ ∗ Φ̄77 Φ̄78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̄88


Φ̄11 = −P1 +Q1 +Q2 − S1 − S2, Φ̄12 = 0, Φ̄13 = S1, Φ̄14 = S2

Φ̄15 = Φ̄16 = Φ̄17 = Φ̄18 = 0, Φ̄22 = −P2 +R− T

Φ̄23 = Φ̄24 = Φ̄25 = Φ̄26 = Φ̄27 = Φ̄28 = 0, Φ̄33 = −2S1, Φ̄34 = Φ̄35 = 0, Φ̄36 = S1

Φ̄37 = Φ̄38 = 0, Φ̄44 = −2S2, Φ̄45 = Φ̄46 = 0, Φ̄47 = S2, Φ̄48 = 0, Φ̄55 = −2T

Φ̄56 = Φ̄57 = 0, Φ̄58 = T, Φ̄66 = −Q1 − S1, Φ̄67 = Φ̄68 = 0, Φ̄77 = −Q2 − S2, Φ̄78 = 0

Φ̄88 = −R− T, Ω1 =
[
A 0 0 β̄BK −β̄BK 0 0 0

]
Ω2 =

[
Γ1 Γ2 −ᾱLC β̄BK −β̄BK 0 0 0

]
Ω3 =

[
A− I 0 0 β̄BK −β̄BK 0 0 0

]
Ω4 =

[
Γ1 Γ2 − I −ᾱLC β̄BK −β̄BK 0 0 0

]
Ω5 =

[
0 0 α1LC 0 0 0 0 0

]
, Ω6 =

[
0 0 −ᾱLC 0 0 0 0 0

]
Ω7 =

[
0 0 0 β1BK −β1BK 0 0 0

]
Ω8 =

[
0 0 0 β̄BK −β̄BK 0 0 0

]
Θ1 = −2ε1I + ε21P1, Θ2 = −2ε2I + ε22P1, Θ3 = −2ε3I + ε23

(
d⃗2S1 + τ̄ 2S2

)
Θ4 = −2ε4I + ε24τ̄

2S2, Θ5 = −2ε5I + ε25
(
P + τ̄ 2S2

)
Θ6 = −2ε6I + ε26

(
P1 + P2 + d⃗2S1 + τ̄ 2S2 + τ̄ 2T

)
Γ1 = LC −BK, Γ2 = A+BK − LC

Proof: Let s(k) = x(k + 1) − x(k) and z(k) = e(k + 1) − e(k), according to (10) and
(11), we have

s(k) = (A− I)x(k)−
(
β̄ −

(
β̄ − β(k)

))
BK(x(k − τ(k))− e(k − τ(k)))

z(k) = (Γ2 − I) e(k)−
(
β̄ −

(
β̄ − β(k)

))
BKe(k − τ(k)) + Γ1x(k)

+
(
β̄ −

(
β̄ − β(k)

))
BKx(k − τ(k))− (ᾱ− (ᾱ− α(k)))LCx(k − d(k)) (14)

Then, we construct the Lyapunov-Krasovskii functional candidate as

V (k) = V1(k) + V2(k) + V3(k) + V4(k) + V5(k)

where

V1(k) = xT (k)P1x(k) + eT (k)P2e(k)

V2(k) =
k−1∑

i=k−d̄

xT (i)Q1x(i) +
k−1∑

i=k−τ̄

xT (i)Q2x(i)

V3(k) =
k−1∑

i=k−τ̄

eT (i)Re(i)

V4(k) =
−1∑

i=−d̄

k−1∑
j=k+i

d̄sT (j)S1s(j) +
−1∑

i=−τ̄

k−1∑
j=k+i

τ̄ sT (j)S2s(j)
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V5(k) =
−1∑

i=−τ̄

k−1∑
j=k+i

τ̄ zT (j)Tz(j)

Calculating the forward difference of V (k) and taking the mathematical expectation
E{∆Vi(k)} = E{Vi(k + 1)} − Vi(k), we obtain

E {∆V1(k)} = E
{
xT (k + 1)P1x(k + 1) + eT (k + 1)P2e(k + 1)

}
− xT (k)P1x(k)

− eT (k)P2e(k) (15)

Then, it can be obtained that

E{∆V2(k)} = xT (k)Q1x(k)− xT
(
k − d̄

)
Q1x

(
k − d̄

)
+ xT (k)Q2x(k)

−xT (k − τ̄)Q2x(k − τ̄)

E{∆V3(k)} = eT (k)Q2e(k)− eT (k − τ̄)Q2e(k − τ̄) (16)

and

E {∆V4(k)} ≤ E
{
d̄2sT (k)S1s(k)

}
−

k−1∑
i=k−d̄

d̄sT (i)S1s(i) + E
{
τ̄ 2sT (k)S2s(k)

}
−

k−1∑
i=k−d̄

τ̄ sT (i)S2s(i)

E {∆V5(k)} ≤ E
{
τ̄ 2zT (k)Tz(k)

}
−

k−1∑
k=1

τ̄ zT (k)Tz(k) (17)

Obviously we have

−
k−1∑

i=k−d̄

d̄sT (i)S1s(i) = −
k−1∑

k−d(k)

d̄sT (i)S1s(i)−
k−d(k)−1∑
i=k−d̄

d̄sT (i)S1s(i)

≤ −
k−1∑

k−d(k)

d(k)sT (i)S1s(i)−
k−d(k)−1∑
i=k−d̄

(
d̄− d(k)

)
sT (i)S1s(i) (18)

According to Lemma 2.2, we have

−
k−1∑

k−d(k)

d(k)sT (i)S1s(i)−
k−d(k)−1∑
i=k−d̄

(
d̄− d(k)

)
sT (i)S1s(i)

≤ − [x(k)− x(k − d(k))]TS1[x(k)− x(k − d(k))]

−
[
x(k − d(k))− x

(
k − d̄

)]T
S1

[
x(k − d(k))− x

(
k − d̄

)]
Furthermore we have

−
k−1∑

i=k−d̄

d̄sT (i)S1s(i) ≤ −[x(k)− x(k − d(k))]TS1[x(k)− x(k − d(k))]

−
[
x(k − d(k))− x

(
k − d̄

)]T
S1

[
x(k − d(k))− x

(
k − d̄

)]
(19)

Similarly, we have

−
k−1∑

i=k−τ̄

τ̄ sT (i)S2s(i) ≤ −[x(k)− x(k − τ(k))]TS2[x(k)− x(k − τ(k))]

−[x(k − τ(k))− x(k − τ̄)]TS2[x(k − τ(k))− x(k − τ̄)] (20)
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and

−
k−1∑

i=k−τ̄

τ̄ zT (i)Tz(i) ≤ −[e(k)− e(k − τ(k))]TT [e(k)− e(k − τ(k))]

−[e(k − τ(k))− e(k − τ̄)]TT [e(k − τ(k))− e(k − τ̄)] (21)

Then based on the above analysis, (17) can be rewritten as

E {∆V4(k)} ≤ E
{
d̄2sT (k)S1s(k)

}
− [x(k)− x(k − d(k))]TS1[x(k)− x(k − d(k))]

−
[
x(k − d(k))− x

(
k − d̄

)]T
S1

[
x(k − d(k))− x

(
k − d̄

)]
+E

{
τ̄ 2sT (k)S2s(k)

}
− [x(k)− x(k − τ(k))]TS2[x(k)− x(k − τ(k))]

− [x(k − τ(k))− x(k − τ̄)]TS2[x(k − τ(k))− x(k − τ̄)] (22)

and

E {∆V5(k)} ≤ E
{
τ̄ 2zT (k)Tz(k)

}
− [e(k)− e(k − τ(k))]TT [e(k)− e(k − τ(k))]

−[e(k − τ(k))− e(k − τ̄)]TT [e(k − τ(k))− e(k − τ̄)] (23)

Denote the augmented state vector as

ξT (k) =
[
xT (k) eT (k) xT (k − d(k)) xT (k − τ(k)) eT (k − τ(k))

xT
(
k − d̄

)
xT (k − τ̄) eT (k − τ̄)

]
According to (15), (16), (22) and (23), we have

E{∆V (k)} ≤ ξT (k)Φξ(k) (24)

where

Φ =



Φ11 Φ12 Φ13 Φ14 Φ15 Φ16 Φ17 Φ18

∗ Φ22 Φ23 Φ24 Φ25 Φ26 Φ27 Φ28

∗ ∗ Φ33 Φ34 Φ35 Φ36 Φ37 Φ38

∗ ∗ ∗ Φ44 Φ45 Φ46 Φ47 Φ48

∗ ∗ ∗ ∗ Φ55 Φ56 Φ57 Φ58

∗ ∗ ∗ ∗ ∗ Φ66 Φ67 Φ68

∗ ∗ ∗ ∗ ∗ ∗ Φ77 Φ78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ88


Φ11 = ATP1A+ ΓT

1 P2Γ1 − P1 +Q1 +Q2 + (A− I)T d̄2S1(A− I) + (A− I)T τ̄ 2S2(A− I)

+ΓT
1 τ̄

2TΓ1 − S1 − S2

Φ12 = ΓT
1 P2Γ2 + ΓT

1 τ̄
2T (Γ2 − I) , Φ13 = −ᾱΓT

1 P2LC − ᾱΓT
1 τ̄

2TLC + S1

Φ14 = β̄ATP1BK + β̄ΓT
1 P2BK + β̄(A− I)T d̄2S1BK + β̄(A− I)T τ̄ 2S2BK + β̄ΓT

1 τ̄
2TBK

+S2

Φ15 = −β̄ATP1BK − β̄ΓT
1 P2BK − β̄(A− I)T d̄2S1BK − β̄(A− I)T τ̄ 2S2BK

− β̄ΓT
1 τ̄

2TBK

Φ16 = Φ17 = Φ18 = 0, Φ22 = ΓT
2 P2Γ2 − P2 +R− T + (Γ2 − I)T τ̄ 2T (Γ2 − I)

Φ23 = −ᾱΓT
2 P2LC − ᾱΓT

2 τ̄
2TLC, Φ24 = β̄ΓT

2 P2BK + β̄ (Γ2 − I)T τ̄ 2TBK

Φ25 = −β̄ΓT
2 P2BK − β̄ (Γ2 − I)T τ̄ 2TBK, Φ26 = Φ27 = Φ28 = 0

Φ33 =
(
ᾱ2 + α2

1

)
(LC)TP2LC +

(
ᾱ2 + α2

1

)
(LC)T τ̄ 2TLC − 2S1

Φ34 = −ᾱβ̄(LC)TP2BK − ᾱβ̄(LC)T τ̄ 2TBK

Φ35 = ᾱβ̄(LC)TP2BK + ᾱβ̄(LC)T τ̄ 2TBK, Φ36 = S1, Φ37 = Φ38 = 0

Φ44 =
(
β̄2 + β2

1

)
(BK)TP1BK +

(
β̄2 + β2

1

)
(BK)TP2BK +

(
β̄2 + β2

1

)
(BK)T

(
d̄2S1

+ τ̄ 2S2

)
BK +

(
β̄2 + β2

1

)
(BK)T τ̄ 2TBK − 2S2
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Φ45 = −
(
β̄2 + β2

1

)
(BK)TP1BK −

(
β̄2 + β2

1

)
(BK)TP2BK −

(
β̄2 + β2

1

)
(BK)T

(
d⃗2S1

+ τ̄ 2S2

)
BK −

(
β̄2 + β2

1

)
(BK)T τ̄ 2TBK

Φ46 = 0, Φ47 = S2, Φ48 = 0

Φ55 =
(
β̄2 + β2

1

)
(BK)TP1BK +

(
β̄2 + β2

1

)
(BK)TP2BK +

(
β̄2 + β2

1

)
(BK)T

(
d̄2S1

+ τ̄ 2S2

)
BK +

(
β̄2 + β2

1

)
(BK)T τ̄ 2TBK − 2T

Φ56 = Φ57 = 0, Φ58 = T, Φ66 = −Q1 − S1, Φ67 = Φ68 = 0, Φ77 = −Q2 − S2, Φ78 = 0

Φ88 = −R− T

If Φ < 0, we obtain that E{∆V (k)} < 0. Following a similar proof procedure in [10], it
yields:

E{∆V (k)} ≤ ξT (k)Φξ(k) < ηT (k)Φη(k) < −λmin(−Φ)ηT (k)η(k) < −µηT (k)η(k) (25)

where

0 < µ < min (λmin(−Φ), σ) , σ : max {λmax (Pi) , λmax (Qi) , λmax(R), λmax (Si) , λmax(T )}
i = 1, 2

From E{∆V (k)} < 0 it yields

E{∆V (k)} < −µηT (k)η(k) < −µ
σ
V (k) = −ψ2V (k) (26)

Hence, it can be obtained from Lemma 2.1 and Definition 2.1 that the closed-loop system
is stochastically stable.
Φ < 0 is a stability condition of the closed-loop system and obviously it is not LMI.

Then in order to solve the observer-based controller design problem, we need a condition
in the form of LMI.
Notice that Φ < 0 is equal to

Φ̄11 Φ̄12 Φ̄13 Φ̄14 Φ̄15 Φ̄16 Φ̄17 Φ̄18

∗ Φ̄22 Φ̄23 Φ̄24 Φ̄25 Φ̄26 Φ̄27 Φ̄28

∗ ∗ Φ̄33 Φ̄34 Φ̄35 Φ̄36 Φ̄37 Φ̄38

∗ ∗ ∗ Φ̄44 Φ̄45 Φ̄46 Φ̄47 Φ̄48

∗ ∗ ∗ ∗ Φ̄55 Φ̄56 Φ̄57 Φ̄58

∗ ∗ ∗ ∗ ∗ Φ̄66 Φ̄67 Φ̄68

∗ ∗ ∗ ∗ ∗ ∗ Φ̄77 Φ̄78

∗ ∗ ∗ ∗ ∗ ∗ ∗ Φ̄88


+ ΩT

1 P1Ω1 + ΩT
2 P2Ω2 + ΩT

2 P2Ω2

+ΩT
3

(
d̄2S1 + τ̄ 2S2

)
Ω3 + ΩT

4 τ̄
2TΩ4 + ΩT

5

(
P2 + τ̄ 2T

)
Ω5 + ΩT

6

(
P2 + τ̄ 2T

)
Ω6

+ΩT
7

(
P1 + P2 + d⃗2S1 + τ̄ 2S2 + τ̄ 2T

)
Ω7

+ΩT
8

(
P1 + P2 + d̄2S1 + τ̄ 2S2 + τ̄ 2T

)
Ω8 < 0 (27)

By using Lemma 2.3, (27) can be transformed into the following inequality:

Φ̄ Ω1 Ω2 Ω3 Ω4 Ω5 Ω6 Ω7 Ω8

∗ −P−1
1 0 0 0 0 0 0 0

∗ ∗ −P−1
2 0 0 0 0 0 0

∗ ∗ ∗ −(d⃗2S1+τ̄2S2)
−1

0 0 0 0 0

∗ ∗ ∗ ∗ (−τ̄2T)
−1

0 0 0 0

∗ ∗ ∗ ∗ ∗ −(P2+τ̄2T)
−1

0 0 0

∗ ∗ ∗ ∗ ∗ ∗ −(P2+τ̄2T)
−1

0 0

∗ ∗ ∗ ∗ ∗ ∗ ∗ −Π−1 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ −Π−1


< 0 (28)

where P1 + P2 + d̄2S1 + τ̄ 2S2 + τ̄ 2T = Π. It is obvious that (28) is not strict LMI so it
cannot be solved directly. According to [17], for any positive scalars εi, i = 1, 2, 3, 4, there
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exist the following inequalities:

−P−1
1 ≤ Θ1, −P−1

2 ≤ Θ2, −
(
d⃗2S1 + τ̄ 2S2

)−1

≤ Θ3, −
(
τ̄ 2T

)−1 ≤ Θ4

−
(
P2 + τ̄ 2T

)−1 ≤ Θ5, −
(
P1 + P2 + d̄2S1 + τ̄ 2S2 + τ̄ 2T

)
≤ Θ6 (29)

According to (29), it can be concluded that if (13) holds, (28) holds. The proof is com-
pleted.

Remark 3.1. By using the inequalities (29), the non-strict LMI (28) can be transformed
into the form of LMI. Differently, some other existing papers apply the idea of the cone
complementarity algorithm (CCL) developed in [18] to transform the original non-convex
feasibility problem to a nonlinear optimization problem. Compared with CCL method, the
basic matrix inequality method has lower computational cost and is easy to understand.

4. Numerical Example. In this section, a numerical simulation result is presented to
show the validity of the designed observer-based controller. The system parameters are
shown as follows:

A =

[
−1.06 0.5
0.2 0.3

]
, B =

[
2
1

]
, C =

[
0.1 0.1

]
The state response of open-loop system (u(k) = 0) is shown in Figure 2 and it is clear
that the open-loop system is unstable. Some parameters are given in the following:

d̄ = τ̄ = 3, ᾱ = 0.2, β̄ = 0.1, ε1 = ε2 = ε3 = ε4 = ε5 = ε6 = 1

By solving the LMI (13) in Theorem 3.1 it yields tmin = −0.0010 which implies that the
LMI is feasible and we obtain that

K =
[
0.1222 −0.1356

]
, L =

[
−9.8039
−0.0189

]
By the observer-based controller (6) and (7) with gains above, the states trajectories are
shown in Figure 3. Obviously, the closed-loop system is stabilized by the observer-based
controller we designed which demonstrate that the proposed method is effective.
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Figure 2. State responses of the open-loop system
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Figure 3. State responses of the closed-loop system

5. Conclusions. In this paper, networked-induced delays and data packet dropouts are
considered simultaneously in both channels. The data packet dropout process is modeled
as random Bernoulli process. By employing a Lyapunov-Krasovskii functional candidate,
the observer gain and controller gain can be obtained through a sufficient condition based
on LMI technique. At last, a numerical example is given to show the effectiveness of our
proposed method.
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