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Abstract. In this paper, a multi-feature descriptor for human activity recognition (HA-
R) was presented. The joints of the human skeleton were extracted from RGB images by
using OpenPose to develop a robust multi-feature descriptor. Three features which are
joint-joint angle, joint-joint horizontal distance, and joint-joint vertical distance were
calculated. For the ease of computational cost, the singular value decomposition (SVD)
was performed. In order to obtain singular values representing one full cycle of activ-
ity without information loss, the matrix sizes were equalized by zero paddings and row
shifting. The singular values obtained from SVD form the final descriptor. The authors
evaluated the performance of the proposed method on the well-known KTH and Weiz-
mann datasets. The experimental results showed that the proposed descriptor gives out
state-of-the-art results in human action recognition.
Keywords: Human activity recognition, Inter joint relation, KTH dataset, Weizzmann
dataset, Singular value decomposition

1. Introduction. Human activity recognition (HAR) is one of the most popular research
topics in computer vision for the past twenty years and has been used in many different
fields such as robotics [1-3], healthcare systems [4], and industrial applications [5, 6]. To
identify human activities with the utmost precision HAR performs an accurate diagnosis
of activity patterns collected from various sensors. Sensors used in HAR can be digital
cameras, wearable sensors, and gyro sensors [7-12].

It is possible to separate sensors for HAR into two categories as vision-based and non-
vision-based sensors. In a non-vision sensor used HAR systems, the relevant features
are first calculated based on the data coming from the sensor. Then, the chosen classi-
fier recognizes the activity concerning the features obtained. On the other hand, vision
sensors used HAR systems follow three steps, namely, pre-processing, feature extraction
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and selection, and classification, to recognize the activity. Both approaches have their
advantages and disadvantages. Compared to vision-based sensors, wearable sensors are
more beneficial in terms of obtaining signals, for the following reasons: (a) unlike vision-
based sensors, wearable sensors would not be affected by environmental limitations such
as fixed scenes and lack of illumination; (b) wearable sensors are better at delivering the
signal while protecting the privacy of subjects. However, wearable sensors are not cost-
effective and cannot be used in daily life conditions. As a conclusion, we decide to use
the vision-based sensor for this study due to the advantages in daily life usage.
Lately, the vision-based HAR problem has been studied extensively and the current

approaches draw attention with their high accuracy rates. Authors in [13] present an
HAR system that relies on weighted segmentation and feature selection approach. They
extract the red channel of the frame and apply some filtering to dealing with background
variations. Also, they introduce a weighted mechanism that extricates a person by assign-
ing weights for the foreground and the background. They use the rank correlation-based
method to select the most relevant features. Another approach to recognize human ac-
tivities is using the bag-of-visual-words model. In [14], authors utilize SURF descriptors
and bag of visual words for human activity recognition. Different from similar studies,
they use grayscale images for feature extraction. They also conduct four different machine
learning classifiers for comparison. In addition to all these, various studies use skeletal
information in the time domain to recognize the activity. Authors in [15] propose a bio-
metric system that extracts the human skeleton and body joints using an RGB-Depth
sensor. They store joint angles in a queue and reduce the dimension of the feature vec-
tor by their proposed thresholding method. They also perform various machine learning
classifiers to compare the performance of their algorithm.
In this paper, authors propose a novel solution to the vision-based human activity

recognition problem. We intend to develop an accurate biometric system which uses a
multi-feature descriptor constructed from the skeletal data. The block diagram of the
proposed method is shown in Figure 1. We use the OpenPose which is a deep-learning-
based algorithm for the extraction of the human skeleton. We calculate the joint-joint

Figure 1. The block diagram of the proposed method
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angle, joint-joint horizontal distance, and joint-joint vertical distance. Singular value de-
composition (SVD) [16] is used to represent the high-dimensional feature matrices by
their unique singular values. We reshape the matrices to the same size by row shifting
and zero paddings, to obtain the same amount of singular values without loss of essential
information. Lastly, a support vector machine (SVM) is used for recognition of the ac-
tivity. According to the results of tests conducted on KTH and Weizmann datasets, our
algorithm performed state-of-the-art performance.

The paper is organized as follows. The research method with all of its substeps is
explained in Section 2. The experiments and benchmarking results on public datasets are
given in Section 3. Lastly, the paper is concluded in Section 4.

2. Research Method.

2.1. Feature extraction. [15] has shown the eight joint-joint angles which are informa-
tive about human activity representation. The locations of these angles are shown with
dashed circles in Figure 2. In this paper, we use the same angles for the final descriptor.
The calculation of the angles is made as below:

ajL,jR = cos−1

(
||mjR||2 + ||mjL||2 − ||jL − jR||2

2 · ||mjR|| · ||mjL||

)
(1)

where ||mjR|| and ||mjL|| represent the distances of reference joint m to the right joint
jR and left joint jL, respectively. ||jL − jR|| is the distance between joints jR and jL.
During the analysis, we observe that a period of activity takes 160 frames for both KTH
and Weizmann datasets. Thus, in one video, the size of the matrix obtained from the
calculation of the joint-joint angle stage is 160× 8.

Figure 2. Human skeleton map using OpenPose framework

Next, we explain only the extraction of joint-joint horizontal distance feature since the
method for the vertical distance feature is the same as the horizontal one. The captured
body joints by OpenPose are shown in Figure 2. However, vertical or horizontal distances
between some of the joints do not carry distinctive information related to the activities.
For example, distances from the left eye to the left ear or from the right ear to the nose do
not change during any activity. This is because the activities we focus on do not contain
any changes in the face. Therefore, we do not consider the joints left eye, left ear, right
ear, and right eye in this study. Only the nose is used as a reference point for the head.
A similar relationship is observed on the feet of a human. The distance between the big
toe and small toe does not differ among the activities. Furthermore, the distance between
the ankle and heel is almost constant. Thus, we keep the joints right-ankle and left-ankle
as foot references but remove the joints {19, 20, 21, 22, 23, 24}. The 2-combination of the
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remaining 15 joints gives 105 distance features. The calculated distances are normalized
among the dataset to be scale-invariant.
Rather than using 105 distance features, we selected the most distinctive features.

The same frames used in the angle calculation are also used in this stage. Feature-
wise standard deviation for each distance feature is calculated. This gives the change
in distance between joints during one period of activity. This procedure is repeated for
every video in the dataset. In the next step, we calculate the activity-based average of
all standard deviation values. After the average standard deviation of each feature for
each class is obtained, min-max normalization is conducted and the inter-class variance
is calculated. While a large variance refers to a more distinctive feature, a small one
refers to a non-distinctive feature. After sorting in descending order, the top-40 features
are selected for the descriptor. The value of 40 is determined by observation of variance
values. It is observed that there is a dramatic drop in variance values after 40. Thus, the
size of the joint-joint horizontal distance matrix of one video is 160× 40.
The above procedure is also carried for the calculation of joint-joint vertical distance,

and it gives an output matrix with a size of 160× 40. Table 1 shows the selected top-40
joint pairs for horizontal and vertical distances. As seen in Table 1, there is a strong
correlation between the vertical and horizontal pairs.

2.2. SVD on shifted feature matrix. We use SVD to reduce the dimensions of the
three feature sets and merge the resulting vectors to create the final descriptor. If we
recall from previous sections, we extract three matrices with sizes 160 × 8, 160 × 40,
160 × 40 from each video, in which frames are the rows and features are columns. If
the SVD is applied to these matrices it will give out non-negative singular values with
amounts of 8, 40, and 40, respectively. However, rows in the matrices are sequentially
located feature vectors of consecutive frames. Thus, information from each row has to be
used to represent one full cycle of the action. On the other hand, the application of SVD
on these matrices would lead to data loss. Thus, we increase the matrix sizes to obtain
160 singular values from each matrix. For a matrix A with size of 160×K, the nth row
is an =

[
a1n, . . . , a

K
n

]
where n ∈ [1, 160]. In (2), each row entry is shifted by (n− 1) to the

right. While each value in the diagonal is a feature vector of that frame, all the values
outside the diagonal are set to zero. The new size of the reshaped matrix A is increased
to 160× 160K.

A =

 a1
...

a160

 After resizing−−−−−−−→

a1

. . .
a160

 (2)

The above method is applied to the matrices of three features. The sizes of these
matrices are changed as 160 × 8 → 160× 1280, 160 × 40 → 160× 6400 and 160 × 40 →
160× 6400 for joint-joint angle, joint-joint vertical and horizontal distances respectively.
When we apply SVD to the new matrices, we obtain 160 singular values from each. These
values are combined to create the final descriptor with size 1× 480 which will be used for
action recognition.

3. Experimental Results. In this paper, we evaluate the performance of our descriptor
and compare it with the state of the art on KTH [17] and Weizmann [18] datasets by using
SVM classifier. We use radial basis function (RBF) kernel with parameters γ = 0.01
and C = 100. KTH dataset consists of six different human activities: running, walking,
jogging, hand waving, hand-clapping, and boxing. The activities are performed by 25
subjects in four different environments. These are indoors, outdoors, outdoors with scale
variation, and outdoor with different clothes. The dataset contains 2,391 sequences with
homogeneous backgrounds. The size of images is 160 × 120. We use the same settings
given in [19]. The accuracy corresponds to the average of the recognition rates for each
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Table 1. Selected distance features

Start joint End joint (V) End joint (H)
right shoulder right shoulder

neck
right elbow right elbow
spine base spine base
left hip left hip

right elbow right elbow
left shoulder right wrist right wrist

left hip left hip
left knee left knee
left ankle left ankle
right hip right hip
right knee right knee

left elbow right ankle right ankle
right shoulder right shoulder
right elbow right elbow
left hip left hip

spine base –
left knee left knee
left ankle left ankle
right knee right knee

left wrist
right ankle right ankle
right elbow right elbow
right wrist right wrist
spine base –
right hip –
left knee left knee

right shoulder
right hip right hip
left hip left hip

– right knee
left knee left knee
left ankle left ankle

right elbow
right hip right hip
left hip left hip

spine base spine base
– right wrist

left hip left hip
right wrist left ankle left ankle

right hip right knee

spine base
right hip right hip
right knee right knee

left hip
right knee right knee
right ankle right ankle

left knee right ankle right ankle
nose right wrist –

human action class. Table 2 shows the recognition results of our method and state-of-the-
art studies. The recognition accuracy of our model is 96.51%. Although our method could
not outperform all of the studies, it showed a comparable recognition performance. We
took only the recent studies of the last three years into the benchmark. In [19], authors use
a novel bag of visual words encoding scheme which achieves 98.4% accuracy rate. In [13]
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Table 2. Average recognition accuracy of our method and state-of-the-art
methods for KTH dataset

Method Average accuracy (%)
Naveed et al. [20] 92.30
Cho and Byun [21] 94.55
Khare et al. [22] 95.72
Aslan et al. [14] 96.14
Our method 96.51

Cortes et al. [19] 98.40
Sharif et al. [13] 99.90

authors employ a novel weighted segmentation method and also a rank correlation-based
feature selection approach which gives out 99.9% accuracy rate.
Our method was also tested on the Weizmann dataset. This dataset contains 90 low-

resolution videos. There are 10 different activities which are running, jumping in place,
jumping forward, bending, waving with one hand, jumping jack, jumping sideways, jump-
ing on one leg, walking, and waving with two hands. Each activity is performed by 9
different subjects. The experimental setup in this dataset is based on leave-one-person
scheme. Then, for each subject, there are 10 videos, which correspond to the testing set
and 80 to the training set.
Table 3 shows that our method outperforms all of the state-of-the-art results by giving a

100% recognition rate. The accuracy is the average of the recognition rates of 10 activities.
Similar to the results of KTH dataset, the highest two performances belong to [13] and
[19].

Table 3. Average recognition accuracy of our method and state-of-the-art
methods for Weizmann dataset

Method Average accuracy (%)
Aslan et al. [14] 91.11
Naveed et al. [20] 92.70
Xiao and Song [23] 96.50
Cortes et al. [19] 96.60
Sharif et al. [13] 98.12
Our method 100

4. Conclusion. We propose an efficient model for human activity recognition in 2D
videos. Our model applies SVD on a biometric feature set which consists of joint-joint
angle, joint-joint horizontal, and joint-joint vertical distances between selected joints.
The output of SVD is used as the main descriptor. The experiments show that our model
outperformed state-of-the-art studies in Weizmann and also obtained comparable results
in the KTH dataset. For future studies, we are aiming to adopt our model for activity
recognition in real-time videos.
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