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Abstract. Semantic representations are essential to enforce meaning preservation and
handle data sparsity of machine translation models. However, little work has been done
on leveraging semantics for neural machine translation. There is an approach which tried
to adapt AMR graphs to sequence to sequence learning using recurrent neural networks.
This paper presents a novel method to integrate abstract meaning representation graphs
as the semantic representations to a convolutional neural machine translation system
via combining graph representations with the word representations as well as feeding the
graph representations into the multi-head attention layer. Compared to recurrent models,
computations over all elements can be fully parallelized during training to better exploit
the GPU hardware and optimization is easier since the number of non-linearities is fixed
and independent of the input length. Experiment results show that our proposed method
significantly outperforms strong baselines on English-Vietnamese datasets in increasing
the quality of translations.
Keywords: Neural machine translation, Abstract meaning representation, Light con-
volutional neural networks

1. Introduction. Neural Machine Translation (NMT) models [1, 2, 3, 4] have been
proven to be powerful and drawn much attention in recent years. In practical applica-
tions, NMT systems are often fed with a sentence-level input which requires solely word
representations. Many researchers have proven that semantic information is essential to
generate coherent and consistent translations for machine translations [5, 6, 7, 8]. Despite
the great success of the above models, they are mostly designed for statistical machine
translations. The task of exploring semantics for NMT has so far received relatively little
attention.

Recent work has applied semantic representations to neural sequence modeling such as
Marcheggiani et al. [9] who exploited Semantic Role Labeling (SRL) for NMT, showing
that the predicate-argument information from SRL is able to improve the performance of
an attention-based sequence-to-sequence model or Song et al. [10] who indicated that the
structural semantic information from Abstract Meaning Representation (AMR) graphs
[11] can be complementary to the source textual input by introducing a higher level
of information abstraction. In this approach, a Graph Recurrent Network (GRN) was
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leveraged to encode AMR graphs without breaking the original graph structure, and a
sequential Long-Short Term Memory (LSTM) [12] was used to encode the source input.
The decoder was a doubly attentive LSTM, taking the encoding results of both the graph
encoder and the sequential encoder as attention memories. Song et al. also proved that
the integration of AMR is much better than the one of SRL alone because the AMR
graphs not only contain the SRL but also have relations between nodes (i.e., words).
However, the method is purely based on the LSTMs which maintain a hidden state of the
entire past that prevents parallel computation within a sequence.
This paper presents how we integrate AMR graphs as additional semantic informa-

tion into the NMT (Conv2seq), using light convolutional neural network [13] which is a
lightweight version of original convolutional neural network [14]. AMR graphs are root-
ed, labeled, directed, acyclic graphs, comprising whole sentences. They are intended
to abstract away from syntactic representations, in the sense that sentences which are
similar in meaning should be assigned the same AMR, even if they are not identically
worded. Figure 1 shows an AMR graph, in which the nodes (e.g., start-01, university)
represent the concepts, and edges (e.g., :ARG0, :ARG1) represent the relations between
concepts they connect. Comparing with semantic roles, AMRs capture more relations
(e.g., between exam and university). Moreover, AMRs directly capture entity relations
and remove inflections (i.e., using lemma) and function words. Consequently, they can
adapt to the textual input to produce a better contextual representation. Furthermore,
structural information from AMR graphs can help reduce data sparsity in low-resource
settings. First, AMR graph representations are combined with word representations to
establish a better contextual representation of a sentence. Second, the multi-head atten-
tion can attend to all the positions of the contextual features with outputs of the AMR
graph representations.

Figure 1. The AMR graph for the sentence: “I started studying for
the university entrance exam.”

This method shows several advantages. First, it may be of great benefits to NMT mod-
els, potentially reducing data sparseness and semantic ambiguity problems. Second, the
structural semantic information from AMRs can be complementary to the textual input
by providing a higher level of information abstraction so the input word representation
is better encoded. Finally, multi-head attention can also take advantages of the semantic
information to improve the dependencies between words in a sentence.
Recently, several graph-to-sequence models or integrating semantic structures on NMT

have been proposed. Semantic Role Labeling (SRL) was explored for NMT in [9]. A
Graph2Seq model which is an extension of GraphSAGE [15] was proposed in [16], learning
bi-directional node embeddings for directed and undirected graphs with node attributes
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by employing various aggregator architectures and learning a graph-level embedding by
exploiting two different graph embedding techniques.

Before us, only the method in [10] investigated the effectiveness of AMR on NMT
based on their recent work on parsing AMR to text and on a Graph Recurrent Network
(GRN) [17] for modelling AMRs. In this work, they adopted a doubly-attentive LSTM
decoder, taking the encoding results of both the graph encoder and the sequential encoder
as attention memories. In this paper, we also investigate the usefulness of AMR on NMT
but leverage graph embedding algorithm of [16] to learn AMR representations.

There are several distinctions between the above works and ours. First, we extend
the node embedding algorithm [16] to utilize edge information directly instead of adding
a node representing an edge into a graph and assigning attributes of the edge as text
attributes. Note that, adding nodes into graphs may not only change the inherent topol-
ogy of graphs but also add noise information to graphs, leading to a significant drop in
terms of performance. Second, we propose an architecture which adopted an inductive
graph encoder rather than graph recurrent network in [10]. Finally, we apply AMRs on N-
MT systems with low-resource settings for English-Vietnamese translation via lightweight
convolutional neural networks.

2. Lightweight Convolution to Sequence.

2.1. Lightweight convolution. Depthwise Convolution performs a convolution in-
dependently over every channel in order to reduce the number of parameters from d2k to
dk where k is the kernel size. The output O ∈ Rn×d of a depthwise convolution operation
for the i-th element and each output dimension c, with c < d, is computed as:

Oi,c = DepthwiseConv(X,Wc,:, i, c) =
k∑

j=1

Wc,j ·X(i+j−⌈ k+1
2 ⌉),c

with W ∈ Rd×k as model parameter.
Lightweight Convolution or LightConv [13] is a depthwise convolution which shares

certain output channels and whose weights are normalized across the temporal dimension
using softmax.

LC
(
X,W⌈ cH

d ⌉,:, i, c
)
= DepthC

(
X, softmax

(
W⌈ cH

d ⌉,:
)
, i, c

)
where LC and DepthC stand for LightConv and DepthwiseConv operations, respectively.
The LightConv is also known also a simplified version of the original CNN [14], which is
optimized to take advantages of parallel processing to speed up the training process [18].

2.2. LightConv2Seq. The LightConv2Seq follows the encoder-decoder architecture [2]
as shown in Figure 2(b) except the graphical part on the right side. The encoder and
decoder networks have N blocks each. The encoder blocks comprise two sub-blocks: the
first is a LightConv module, and the second is a feed forward network followed by a
ReLU activation function. The sub-blocks are surrounded by a residual connections [19]
and layer normalization [20].

Decoder blocks share identical structure but they have an extra multi-head attention
(orange block in Figure 2(b)) to learn alignment between source and target language.
This attention projects the values and keys over the encoder output for each source word.
Then the result is passed through a feed forward network and a softmax layer to produce
output probabilities.

3. Proposed Method. We propose a method to encode AMR graphs via graph embed-
ding method and then adapt the graph embeddings to multi-head attention layer.
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(a) Graph encoder architecture

(b) Model architecture

Figure 2. (color online) Graph encoder and model architecture
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3.1. Learning graph embedding. Figure 2(a) shows the overall architecture of graph
encoder which follows Xu et al.’s model [16]. However, we have some improvements to
the architecture to adopt edge information and enhance performance of the model.

Firstly, we introduce our fined node embedding algorithm. Given an AMR graph G =
(V , E), we take the embedding process for node v ∈ V as follows:

1) We first transform the text attribute of node v and edge e into feature vectors: av and
ae, respectively, by looking up the embedding matrix E. Node v is represented by a
concatenation of av and ae.

av = CONCAT(av, ae)

2) Next, we categorize the neighbors of v into two subsets: forward neighbors, N⊢(v) and
backward neighbors, N⊣(v). Particularly, N⊢(v) returns the nodes that v directs to
and vice versa.

3) We aggregate the forward information of v’s forward neighbors
{
hk−1
u⊢ , ∀u ∈ N⊢(v)

}
into a single vector, hk

N⊢(v)
, where k ∈ {1, . . . , K} is the iteration index. We do this by

using one of three AGG⊢ mentioned below.
4) Then we concatenate v’s current forward representation, hk−1

v⊢ , with the new neigh-
borhood vector, hk

N⊢(v)
. The result is passed to a feed forward layer, followed by a

non-linearity activation function σ, which updates the forward representation of v, to
be used in the next iteration.

5) Update the backward representation of v, hk
v⊣, using similar procedure in steps 3) and 4)

but this time we use backward representations rather than the forward representations
and use AGG⊣ to aggregate neighbor information.

6) Repeat steps 3)∼5) K times, the concatenation of the final forward and backward
representation is used as the final bi-directional representation of v.

zv = CONCAT
(
hK
v⊢,h

K
v⊣
)
, ∀v ∈ V

In steps 3) and 5), we aggregate v’s representation by using one of these aggregator
architectures:

Mean aggregator: This aggregator function takes the element-wise mean of the vec-
tors in

{
hk−1
u⊢ ,∀u ∈ N⊢(v)

}
and

{
hk−1
u⊣ ,∀u ∈ N⊣(v)

}
.

GCN aggregator: Similar to mean aggregator, but followed by a feed forward layer
and a non-linearity activation function.

AGG⊢k = σ
(
WMEAN

(
hk
u⊢
)
+ b

)
, u ∈ N⊢(v)

AGG⊣k = σ
(
WMEAN

(
hk
u⊣
)
+ b

)
, u ∈ N⊣(v)

where MEAN denotes the element-wise average operator, and σ is a nonlinear activation
function.

Pooling aggregator: In this aggregator, each neighbor’s vector is fed through a fully-
connected neural network, and an element-wise max-pooling operation is applied:

AGG⊢k = max
({

σ
(
Wph

k
u⊢ + b

)
, u ∈ N⊢(v)

})
AGG⊣k = max

({
σ
(
Wph

k
u⊣ + b

)
, u ∈ N⊣(v)

})
where max denotes the element-wise max operator, and σ is a nonlinear activation func-
tion. By applying max-pooling, the model can capture different information across the
neighborhood set.

The graph embedding vector, Z, contains information in the entire graph, generated
from node embeddings by applying one of three kinds of aggregators above across the
node representations:

Z = AGG(zv, ∀v ∈ V)
where AGG denotes the aggregator.
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3.2. Enhancing decoder. Multi-head attention [4] performs linearly projections to ob-
tain keys (K), queries (Q) and values (V) H times (H is the number of heads), learned
the projections to dk, dq, dv dimensions, respectively, then we do the attention function
in parallel, resulting in the output values with dv dimensions. These output values then
are concatenated and once again projected, yielding the final values.

Attention = softmax

(
QKT

√
dk

)
V

hi = Attention
(
QWQ

i , KWK
i , V W V

i

)
MultiHead(Q,K, V ) = CONCAT(h1, h2, . . . , hh)W

O

where WQ
i , WK

i , W V
i and WO are model parameters.

Inspired by [10], we also use a doubly attentive decoder to incorporate external AMR
knowledge (as shown in Figure 2(b) on the right side). Instead of using a single attention
mechanism, we have found it beneficial to adopt multi-head attention mechanism which
applies three projections to the input X ∈ Rn×d to obtain key (K), query (Q) and value
(V) representations, where n is the number of time steps, d is the input/output dimension.
In case of number of headsH > 1, multi-head attention performs the attention mechanism
in parallel, yielding a dv-dimension output values. Then, these values are concatenated
and pass through a linear layer, resulting in the final output values. Multi-head attention
allows the model to jointly attend information from different representation sub-places at
different positions which is unable to achieve when adopting a single attention head.

4. Experiments.

4.1. Datasets. We use the IWSLT 2015 English-Vietnamese dataset [21], which con-
tains around 130 thousand sentence pairs for training and use tst2012 for tuning model
parameters and early stopping. We evaluate on the official test set tst2013 and tst2015.

Table 1. Statistics of the English-Vietnamese datasets

Dataset
# tokens # types

# sents
en vi en vi

train 2,435,771 2,867,788 44,573 21,611 117,055
dev(tst2012) 27,988 34,298 3,518 2,170 1,553
test(tst2013) 26,729 33,683 3,676 2,332 1,268
test(tst2015) 20,850 26,235 3,127 2,059 1,080

For preprocessing phase, we use Byte-Pair Encoding (BPE)1 [22] with 8,000 merge op-
erations to deal with rare and compound words and apply to both English and Vietnamese
sides.
For AMR parsing, we use NeuralAmr toolkit2 [23] which implements the sequence-

to-sequence models to the tasks of AMR parsing and AMR generation. Their model
achieves competitive results of 62.1 SMATCH [24], the current best score reported without
significant use of external semantic resources.
We measure the end translation quality with case-insensitive BLEU [25]. We also apply

the bootstrap re-sampling method [26] to measuring the statistical significance (p < 0.05)
of BLEU score differences between translation outputs of proposed models compared to
the baseline.

1https://github.com/rsennrich/subword-nmt
2https://github.com/sinantie/NeuralAmr
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4.2. Experimental settings. We train several models to study the effectiveness of AMR
knowledge on NMT systems. First of all, we start from the baseline of using LightConv
for translating from English to Vietnamese. We use 4 blocks with kernel size of 3, 7, 15,
31, respectively for each block for both encoder and decoder, H is set to 8. Embedding
size is 512. In training phase, Adam optimizer [27] is adopted with a fixed learning rate
(0.0002), max tokens per epoch is 3,500 and the number of epochs is 10. Finally, once the
model is trained, using beam search with beam size of 5 to look for a translation which
approximately maximizes the conditional probabilities.

For semantic-based models (i.e., using AMR graphs), we configure as the same with
baselines and stack 2 graph encoder layers. LightConv2Seq-AMR-F takes information
from outgoing (forward) neighbors, LightConv2Seq-AMR-B receives incoming (backward)
neighbors, LightConv2Seq-AMR aggregates information from both directions (forward
and backward neighbors). Both node and edge embedding dim are set to 128 and use
max-pooling aggregator to aggregate neighbor information. Again, the number of heads
in graph attention is set to 8; we will also give further investigation on the impact of this
hyper-parameter.

4.3. Results and analysis. We explain our experiments and our analyses on the English-
Vietnamese dataset.

Result. We show our experiments in Table 2 and output examples in Figure 3. For
both datasets (tst2013 and tst2015), our approach substantially outperforms the base-
lines. Compared to Song et al.’s method who also used anonymized forms of AMRs to
alleviate the data sparsity problem, LightConv2Seq-AMR achieves better performance in
both tst2013 and tst2015 which is 28.46 (+2.34) and 25.67 (+2.09), respectively. Similarly,
when aggregating information from only one direction (LightConv2Seq-F, LightConv2Seq-
B), models also improve BLEU score (+1.0) over Song et al.’s model. This indicates that

Table 2. Experimental results

Models
BLEU

tst2013 tst2015
Song et al.’s method 26.12 23.58
LightConv2Seq 27.47 25.09
LightConv2Seq-AMR-F 27.71 25.05
LightConv2Seq-AMR-B 27.84 25.27
LightConv2Seq-AMR 28.46 25.67

Figure 3. Output examples
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our system can leverage AMR knowledge to achieve better translation quality. Further-
more, our models spend much less time in training time (40 minutes) compared to the
one of Song et al.’s model (roughly 6 hours).
Analysis. We have trained several models to investigate the impact of depth, N , and

multi-head attention by adjusting the number of heads, H, in graph attention on model’s
performance. Figure 4 shows BLEU scores when stacking more encoder and decoder
blocks and changing H. In this figure, left diagram shows test results when we stacked
2 graph encoder layers and 3 graph encoder layers on the right side. Overall, on both
sides, performance is improved as H increased. In particular, left diagram shows that the
number of blocks as N = 4, 6 can benefit the model as BLEU score raises significantly
from 27.8 to 28.47 and 27.54 to 28.20 over investigated heads, respectively. The other
settings witnessed a downward trend from the 2nd to 8th head. We also develop a “deep”
model by stacking one more graph encoder layer to three layers. At the glimpse at the
right diagram, we can see that the more encoder decoder blocks, the higher BLEU score
that models can achieve, it is clearer when we set H = 4. This suggests that our models
need more decoder layers in order to leverage AMR knowledge because when stacking
more graph encoder layers, models are able to learn much more abstract representation.

Figure 4. Test result with different encoder decoder blocks (4,3 denotes
the model has 4 blocks in encoder and 3 blocks in encoder) and number of
heads in graph attention, conducted with tst2013

5. Conclusions. In this paper, we propose a semantic NMT framework, which can suc-
cessfully exploit the AMR graphs as the semantic representations. Extensive experimen-
tation and analysis show that our model has indeed learned to leverage a better meaning
context. We also propose the simple yet efficient approach for adapting lightweight con-
volutional neural networks in our NMT framework which makes the training/predicting
process much faster.
For future work, we intend to investigate the possibilities to leverage the transformer

framework with AMR graphs as well as exploring more semantic graphs such as semantic
dependency parsing and elementary dependency structures.
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