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Abstract. Due to recent technologies advancement, research in argument mining has
been growing very fast. A huge gap of different technical environment might affect the
studies in a form of performance comparison. In this paper, we attempted to test all
previous work in one test environment for more accurate feature extraction analysis.
Our research focused on the clause-level argument classification task. We measured each
feature group from other studies including our own features which combine several well-
defined features. For feature extraction, group 54 features into 8 sub-groups: structural,
lexical, syntactic, contextual, indicator, embedding, probability, and similarity. With
XGBoost (eXtreme Gradient Boosting) and SMO (Sequential Minimal Optimization) as
the learning model, we were able to obtain the slightly higher accuracy than the state-of-
the-art, which is 81.70%. We also found that some extraction methods from the previous
study performed better when tested in other environment.
Keywords: Argument mining, Feature extraction, Clause-level, Argument classification

1. Introduction. Argumentation mining is a research area within the natural language
processing field that aims to extract the idea from dialogues, essays, and other texts.
There are tasks that were found to be beneficial by utilizing argumentation information
mining from the texts, such as troll post-detection, knowledge retrieval, review analysis
[1], information validation and argument assessment in an essay [2]. One of argument
mining implementation is the fact detection and source identification in social media [3].
Improving the ability of argumentation mining may lead to more possibilities and abilities
for artificial intelligence applications [4].

The goal of argument mining is the automatic extraction and identification of argumen-
tative structures from natural language text with the aid of computer programs [5]. By
integrating argumentation mining in writing environments, we would be able to inspect
argument text and improve the quality of the argumentation [6].

One of argumentation mining tasks is to classify an argument. Based on well-established
argumentation theories [7], an argumentation consists of several argument components,
such as claims and premises. Claim is a controversial statement or arguable statement
that should be accepted by the reader without additional support, and premise are reasons
for justifying the claim [6].

“...Moreover, (1) earning money is the fundamental reason why people work. (2) The
amount of money is always the most important criterion for everyone to choose a job.
If I work for other people, I have to give my ideas to employers cheaply. Therefore, I
never have been rich in my life, because my salary is not dramatically changed. In spite
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of many problems of having own business, I can earn more money based on my creativity
and personal ideas.
To sum up, in spite of the fact that (3) many people are not eager to work for themselves,

(4) I would like to run my own business to control my own time, and to earn more money
based on my noble ideas.”
Paragraph above represents example of argument annotations. In this example, argu-

ments (1) and (2) are premises, supporting the claim for (3) and (4). The argument (3)
is a claim, while the argument (4) is the major claim.
The classification of argument component and visualization has several advantages,

such as to show clear, strong, and structured/organized arguments. Thus, having better
accuracy in classifying argument components becomes a major problem [8]. A study from
Aker et al. [5] shows that there is more available improvement by analyzing previous
work from Stab and Gurevych [6]. With the aim of better classification and analysis, we
test all previous work in one test environment. We managed to improve the argument
classification performance by modifying the feature extractors.
In Section 2, we examine the works that lead to our research. The data, feature extrac-

tions and algorithms are covered in Section 3. The results are reviewed by comparing the
performance of each result in Section 4. Finally, conclusions are presented in Section 5.

2. Related Works. Most previous research separates the argument mining into three
subtasks: argument identification, argument classification, and argument relation classi-
fication. Argument identification task is to identify argument and non-argument in text.
Argument classification puts each argument into Argument Discourse Units (ADU) types:
thesis, conclusion, premise, and none. Lastly, argument relation classification connects
the argument components in terms of support or attack between two arguments. Re-
cent study [9] addresses all of three subtasks in end-to-end argument mining analysis.
They examined the pipeline approach problem and proposed a novel objective function
that enables F-score to be maximized directly by an Integer Linear Programming (ILP)
framework solver.
Experiment from Palau and Moens [10] classified a sentence-level argument into a claim,

premise, and non-argumentative. Rooney et al. applied kernel methods for classifying
sentence-level argument as either claim, premise, or non-argumentative [11]. Stab and
Gurevych initiated a novel approach for identifying argumentative discourse structures
in persuasive essays [6]. They did research on all of three subtasks. The argument
classifications annotate the clause-level argument into four classes: Major Claim, Claim,
Premise, and None. These annotations are related to ADU types, for example, Major
Claim is synonymous to Thesis since they both represent the main idea of the argument.
They used 5 main features: structural, lexical, syntactic, indicators, and contextual for
identifying an argument. In their research, they used their own corpus, containing 90
persuasive essays compiled by themselves, trained with Support Vector Machine (SVM)
[12] classifier with 10-fold cross-validation method. They achieved 77.30% accuracy in
terms of argument classification.
While they classify a component into non-argument, other study separates an argumen-

tative and non-argumentative in argument identification before classifying the argument
types; hence removing the None class is plausible. For instance, some sentences were
manually annotated to be non-argument and argument, and then extraction of tenses
and moods of verbs in the argument were made as well [13]. Kwon et al. proposed 2
consecutive steps for classifying subjective claims [14]. First, they identified claims in
sentences, and then classified each claim as either support, oppose, or propose. They
achieved 67% accuracy in their classification system, which used a boosting algorithm
implemented in BoosTexter [15].
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As continuation from previous research [12], they use a new corpus consisting of 402
persuasive essays and DKPro Core framework for feature extraction and classification
[16]. They classified the clause-level argument as major claim, claim, and premise. Non-
argumentative class were excluded because non-argumentative were classified in argument
identification task.

There is also an attempt to combine features in argument component classification in
persuasive essays by putting additional features in purpose of increasing the accuracy
[8]. They classified each sentence into four classes: major claim, claim, premise, and
non-argumentative. They have added 7 main features in purpose to explore further in
classifying argument components: structural, lexical, indicators, contextual, syntactic,
prompt similarity, and discourse features. As for the result, they obtained 79.98% accu-
racy by combining all features without discourse features. However, their classification
method seems to be different from studies they compared with.

Other researches put their focuses on performance improvement in classification task.
Nguyen and Litman [17] have proposed an approach for more compact feature spaces,
by replacing a sparse feature like n-gram with argument words and domain word. They
were able to slightly improve the performance, while also reduce a huge amount of feature
space from n-gram. Contextual features were also considered to be the crucial part of
the classification performance [18]. Therefore, removing contextual feature might be an
improvement in the performance.

Feature extraction is proven to be the most powerful approach in many tasks, such
as for speech recognition [19] as well as in compressing traffic classification [20]. This
arrives in an opinion that defining a lot of features to get significant better results is quite
promising.

3. Proposed Methods.

3.1. Data. In this work, we used corpus compiled by Stab and Gurevych [16]. The
dataset contains 402 persuasive essays, and in total it has 7,116 sentences with 147,271
tokens, with 751 major claims, 1,506 claims, and 3,832 premises. We implement train-
test system and 10-fold cross-validation system. For the train-test system, we randomly
split the data into 70% train set and 30% test set with equal class distribution. Each set
contains approximately 1 : 2 : 5 distribution ratio. Because we only classify an annotated
argumentative component, we excluded the None class from the classification. The class
distribution can be seen in Table 1.

Table 1. Class distribution in corpus

Description Major Claim Claim Premise
Total 751 1506 3832

Train data 519 1049 2697
Test data 232 457 1135

For preprocessing, we use LanguageToolSegmenter to identify tokens and sentences as
well as ParagraphAnnotator to identify paragraph. We lemmatize the token by using
MateLemmatizer [21] and SnowballStemmer. For Part-of-Speech tag (POS-tag), con-
stituent and dependency parser, we use StanfordParser. All of pre-processors are available
in the framework made by UKP Lab, DKPro [22].

3.2. Features. For our custom feature extraction, we combined all features that have
been proposed by other research, such as from Stab et al. [6,8,16], in attempt to measure
the highest possible accuracy in exchange of longer processing time. In total, there are 54
features divided into 8 groups: structural, lexical, syntactic, indicator, contextual, word
embedding, similarity, and probability.



114 R. WINATA, E. G. HARYONO AND D. SUHARTONO

3.2.1. Structural features. Structural features define the argument position and size in
the essay. For statistic features, we define a number of tokens for the argument and its
covering sentence, then a number of sentences in the covering paragraph and number of
punctuations in the covering sentence. In addition, we count the number of following
and preceding components in the covering paragraph. For location features, we define
the position of argument in covering paragraph, and in the covering sentence. For binary
features, we checked if the covering sentence contains a question mark. We also checked if
the argument component is the first or the last argument in the paragraph, and whether
it is present in the introduction or conclusion of the essay. Lastly, we add ratio features
proposed by Desilia et al. [8], consisting of token ratio between covering sentence and
paragraph, covering sentence and essay, and paragraph with essay.

3.2.2. Lexical features. For lexical features, we define verbs, adverbs, modals, binary n-
gram, binary lemmatized n-gram, and dependency word pairs. For n-gram, we use 500 top
1-3 grams. Some minor test showed that by using both n-gram and lemmatized n-gram
we were able to obtain the maximum performance as shown in Table 2, with the cost of
more time consumption.

3.2.3. Syntactic features. We checked if the argument component has past tense sentence
or not by checking the Part-of-Speech (POS) of the argument based on Penn Treebank
POS-tag annotation. We also count the depth of parse tree, number of sub-clauses, POS
distribution and production rules. For POS distribution we count every POS for each
token in argument component as numeric features.

3.2.4. Indicator features. Indicator features are mostly binary features that represent one
word in a category that is set to true if they are included in the argument component.
There are 12 categories for indicator words: first person, connective, thesis, forward,
backward, rebuttal, time, conclusion, evidence, cue, contrast and comparison [8]. For
connective indicators, we use 55 discourse markers, each as a binary feature that indicates
if the marker exists in the preceding argument component. First-person indicators consist
of possessive words, such as I, my, mine, myself, and me.

3.2.5. Contextual features. Contextual features are features that depend on the sentence
preceding and following the current argument component. We checked whether those
sentences have a modal verb or not. We also count their amount of punctuations, tokens,
and subclauses. In addition, indicator features were applied to these sentences. Lastly,
we count the number of shared noun phrases of those sentences with the introduction
sentence and conclusion sentence.

3.2.6. Probability features. Probability features are the probability of the argument com-
ponent to be Major Claim, Claim or Premise, given the sequence of lemmatized tokens
from the preceding of argument component. For our experiment, we use the maximum
likelihood estimation of the training data [16].

3.2.7. Word embedding features. Word embedding features were created by averaging the
sum of all word vectors from the argument component’s tokens. We use GloVe, a pre-
trained 100-unit vector to create the vector representation of each word from all essays
[21].

3.2.8. Prompt similarity features. Prompt similarity features compare the cosine value of
token frequency from two sentences [8]. We compare the covering sentences with each of
the following sentences: the previous sentence, the next sentence, the first sentence, and
the last sentence.
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3.3. Classifiers. We used 2 learning models: Sequential Minimal Optimization (SMO)
and then eXtreme Gradient Boosting (XGBoost). SMO is known to yield good results in
argument classification. Meanwhile, XGBoost is an implementation of gradient boosted
decision trees designed for speed and performance.

3.3.1. Sequential Minimal Optimization (SMO). SMO is a simple algorithm proposed by
Platt [24] with a purpose to solve QP (Quadratic Programming) problem on the SVM
(Support Vector Machine). It was later improved by Keerthi et al. [25]. As a result, SMO
is able to solve the smallest possible optimization problem and requires no extra matrix
storage at all. SMO also has linear scale of time consumption with training data size,
compared to standard chunking SVM algorithm which scales linear to cubic.

3.3.2. eXtreme Gradient Boosting (XGBoost). XGBoost is a new open-source learning
model made by [26]. XGBoost is a decision-tree based machine learning model that
uses gradient boosting frameworks and it aims to provide a “Scalable, Portable, and
Distributed, Gradient Boosting”. XGBoost algorithm can also handle large-scale data
using a fast-parallel tree construction which cuts the training time significantly and yet
still provides the effectiveness of gradient boosting algorithm. Therefore, many data
scientists used this to achieve state-of-the-art results on many machine learning challenges.
One of them is a research for attention-based argument mining [27], where XGBoost
classifier outperforms the fully connected layer due to the massive number of parameters
or weights that are needed to be trained in the fully connected neural network.

4. Results and Discussion. We followed the test environment from Stab [14] as the
baseline of performance shift. The test was done with DKPro TC [18], a framework that
is extended from DKPro Core. The processing pipeline can be seen in Figure 1. We
classify the data into 3 classes: major claim, claim, and premise.

There are 3 works that we decided to reproduce. The first and second are from Stab and
Gurevych [6,16], which were done with DKPro Core framework. The third benchmark is
from Desilia et al. [8], which was made without a framework. By unifying the environment,

Figure 1. Argument classification process pipeline
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Table 2. Performance comparison

Related works SMO XGBoost
− 10-Fold Cross-Validation −

Stab and Gurevych (2014) 81.31% 75.08%
Stab and Gurevych (2016) 77.40% 77.18%

Desilia et al. (2017) 80.68% 78.32%
Combined 81.70% 80.39%

− Train Test −
Stab and Gurevych (2014) 80.86% 75.43%
Stab and Gurevych (2016) 77.35% 77.08%

Desilia et al. (2017) 80.64% 77.85%
Combined 81.63% 79.22%

we hypothesized that the result will be less biased and more comparable. Table 2 shows
all test results in both train-test system and cross validation system.
We found that the both experiments [6,8] were able to obtain higher accuracy than

they were initially proposed. Meanwhile, the baseline experiment itself does not change.
This indicates the shifting of performance result when it was done in different test en-
vironment. Our combined features also obtained a slightly better performance in both
test systems. The learning model comparison shows that SMO performs better than
XGBoost. However, XGBoost’s performance is worth to be considered for its computer
resource management which results in less time consumption. The SMO learning model
takes 26-57 seconds and meanwhile the XGBoost learning model only takes 1-4 seconds.
We took a deeper look at each of the confusion matrixes obtained from train-test system.

Each matrixes is shown in Table 3.

Table 3. Confusion matrix

(a) Stab and Gurevych (2014) (c) Desilia et al. (2017)

Actual
Prediction

Actual
Prediction

Major
Claim

Claim Premise
Major
Claim

Claim Premise

Major Claim 204 27 1 Major Claim 199 33 0
Claim 45 293 119 Claim 45 296 116
Premise 8 149 978 Premise 4 155 976

(b) Stab and Gurevych (2016) (d) Combined Features

Actual
Prediction

Actual
Prediction

Major
Claim

Claim Premise
Major
Claim

Claim Premise

Major Claim 205 27 0 Major Claim 203 29 0
Claim 47 148 262 Claim 39 300 118
Premise 14 63 1058 Premise 8 141 986

By comparing Table 3(a) and Table 3(d), we found that our customized feature groups
were able to detect 7 more claims and 8 more premises. However, our customized feature
group consumes half more time to extract features compared to works from Table 3(a).
Further modifications are needed to improve our feature extraction in purpose of opti-
mization for both accuracy and time consumption. Meanwhile, results from Table 3(c)
performed almost as good as the second-best. The confusion matrix shows that it tends
to predict more claims than any other works. We also found that Table 3(b) was the best
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in terms of predicting the premise, with 72 more premises predicted than our combined
features.

Furthermore, we customize our combined feature by removing some of the subgroup
of features to analyze the impact of each feature group. We test these feature groups by
10-fold cross-validation to prevent dataset bias from the train-test system. The results
can be seen in Table 4.

Table 4. Combined features customization using 10-fold cross-validation evaluation

Features SMO F1 MC F1 C F1 P
Structural only 77.76% 77.40% 53.07% 86.94%
Lexical only 70.76% 28.65% 66.58% 81.89%

Contextual only 69.50% 57.63% 21.77% 83.35%
Syntactic only 65.36% 33.02% 10.40% 78.79%
Indicator only 70.71% 65.99% 30.20% 81.41%
Embedding only 62.93% 0% 0% 77.25%
Probability only 65.23% 43.91% 0% 79.25%
Similarity only 68.82% 0% 51.99% 81.47%

. . .
w/o Structural 79.78% 78.96% 61.04% 87.38%
w/o Lexical 81.09% 83.47% 62.98% 87.96%

w/o Contextual 81.70% 84.55% 64.16% 88.24%
w/o Syntactic 81.70% 84.59% 64.14% 88.23%
w/o Indicator 81.70% 84.44% 64.25% 88.22%
w/o Embedding 81.67% 84.10% 64.35% 88.24%
w/o Probability 81.34% 83.95% 63.45% 88.02%
w/o Similarity 81.65% 84.31% 64.23% 88.19%

Structural and lexical features have been proven to be important features for argument
component classification. Structural features contribute a lot for identifying major claim
and premise, because most major claims are structurally identical as they are in the first
sentence or the last sentence, while premise usually comes in the middle of essays. Both
structural and lexical features contribute the most for detecting claim. We hypothesize
that claims are almost identical to a major claim structurally and most of claims are
identifiable by having a modal, such as ‘should, would, might, . . .’ to show the idea of the
argument.

Meanwhile, omitting either contextual, syntactic, and indicator features did not seem
to affect the classification accuracy. However, omitting all three of those features would
affect the performance. By observing Table 4, we can see that each omitted feature group
has low impact in the accuracy and F-measure, except for structural and lexical features.

5. Conclusion. We analyzed each work, by reproducing all previous works with an equal
environment. We used an annotated corpus, and classified the argument component into
major claim, claim, and premise. From whole conducted experiments, we conclude that:

• Our feature combination works slightly better, increasing performance by 0.8% with
train-test system. However, it consumes half more time than the previous work [6].

• It is possible to improve the performance for our feature combination, such as by
replacing the n-gram features into argument and domain words [16], or by using
partial tree kernel instead of contextual features [17].

• The previous work [6] was able to perform better in our test environment.
• By reproducing all previous works with equal environment, we reduced the perfor-
mance bias and were able to analyze in more specific context.
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