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Abstract. Welding inspection is an absolute need for an industrial factory to ensure the
quality of weld joins. However, most of the industry still uses manual inspection which
can be subjective, full of bias, and it will lead to inconsistency of the quality standard.
Therefore, an intelligent system that can check the quality of welding automatically is
needed. As the first step in developing this system, this research aims to create a knowl-
edge model based on deep learning and computer vision that is used to segment weld spots
of iron. A Convolutional Neural Network (CNN) model that adopts the architecture of
UNet is used as the main model with plenty of modification on its architecture and hy-
perparameter tuning. The study of using several convolutional blocks is also conducted to
achieve the best model configuration. The model works by segmenting the captured image
or video frame to determine the region of weld spots. As a result, a modified UNet model
with dense convolutional blocks on its bottleneck has the best performance according to
the percentage of Intersection over Union (IoU) which reaches 75.45% on the validation
set.
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1. Introduction. Welding is one of the important joining technologies in the manufac-
turing industry. For instance, in a single-vehicle, there are at least 3000 weld spots with
different types. A certain kind of inspection technique is needed to ensure the quality of
the welding. To date, a visual inspection and evaluation process for detecting welding de-
fects is still manually operated by the human-eye. As a result, it leads to high subjectivity
and bias. This mechanism also needs a considerable amount of time and labor which is
very inefficient for production. The study of the welding defects detection method has
far-reaching significance for ensuring the quality of the product, improving service life,
and economic benefits. An approach with an intelligent system based on computer vi-
sion can be used to improve the efficiency and accuracy of welding detection. With the
rapid development of artificial intelligence, there are various machine learning methods
that have been applied in many fields. As a new field of machine learning, deep learning
especially CNN indicates great potential for welding detection by continuously reducing
the dimension of the features and effectively improving the detection accuracy.

Recently, CNN shows great potential in the field of detection; thus various extensions
of CNN models have been developed. For instance, Kumar et al. [1] identify the weld
defects using 79 radiographic weld images with 8 defects. The image database has been
pre-processed and the features have been extracted with Gray Level Co-occurrence Ma-
trices (GLCM) into 8 and 64 level features and fed to both feed-forward and cascade
forward neural network for classification. The highest classification accuracy of 88.6% is
achieved using 64 features and cascade forward neural network. Zheng et al. [2] develop
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a method based on CNN to learn the features in the arc welding joint images and classify
them. The total of 7460 images is randomly divided into training and testing sets accord-
ing to the ratio of 80 : 20. Through the design of CNN architecture and optimization,
the training parameters are optimized, and the method achieved an accuracy of 95.93%
on test sets. Khumaidi et al. [3] use a CNN to predict welding defects using 10 layers
of Gaussian kernel, 60 times iteration, and gradient descent algorithm. The Gaussian
kernel, used for blurring images, improves the image extraction without losing the main
information from the original image, and this filter also reduces the occurrence of noise
or interference. This method has successfully predicted welding defects with validation
accuracy until 95.83% for four different types of welding defects. Then, Zhang et al. [4]
propose a Wasserstein Generative Adversarial Networks (WGANs) based data augmenta-
tion approach and train two deep CNNs using feature-extraction-based transfer learning
techniques in imbalanced X-ray images of weld defects. The two trained CNNs are com-
bined to classify defects through a multi-model ensemble approach, aiming to reduce the
false detection rate. The experiments achieve satisfying accuracy, which substantiate the
possibility that the proposed approach is promising for weld defect detection. Yang et al.
[5] create a SqueezeNet-based CNN model to achieve more accurate recognition results
compared with the state-of-the-art surface defect classifiers. Wen et al. [6] propose a
deep CNN for semiconductor wafer surface defect inspection. This method uses feature
pyramid networks with atrous convolution to extract semantic features and generate fea-
ture maps, and then feeds it into the Region Proposal Network (RPN) to generate region
proposals. Then, the Deep Multi-Branches Neural Network (DMBNN) is used to classify
and segment the defects. Kang et al. [7] use the novel CNN called Efficient Neural Ar-
chitecture Search via Parameter Sharing (ENAS) to determine whether the architecture
search method is effective for detecting the welding defect images.
Following the trend of the state-of-the-art for segmentation tasks and as inspired from

the aforementioned research, in this study, we present a CNN model to segment weld
spots. The architecture of the model is following UNet style [9] which is modified with
various convolutional blocks and different sizes of feature maps. To be more detailed, the
novelties of this research are summarized as follows.

• We create our own welding spot dataset that is gathered from several welding facto-
ries in Tulungagung city, Jawa Timur, Indonesia. Each factory has different welding
characteristics which can be a challenging issue for any machine learning model.
Each image is annotated using VGG image annotator [8]. This dataset can be used
for future research in the area of welding segmentation.

• We perform an ablation study to evaluate the model performance by changing convo-
lutional blocks on the model architecture. For each convolutional block, we compute
the loss and segmentation IoU during training and validation to examine the best
convolutional block.

The remainder of this paper is organized as follows. In Section 2, we describe the
research methodology which includes the dataset information, model architecture, and
experiment settings. Then, we provide the results and discussion in Section 3. Finally,
the conclusion is presented in Section 4.

2. Material and Method. This research aims to develop a deep learning model that
modifies the UNet architecture to detect any weld spot by segmenting the captured image.
In this section, detailed steps on how to develop the model are explained. In brief, this
section describes how the dataset is created, the modified UNet architecture, metric and
loss function, and the experiment setting.

2.1. Dataset. A CNN model needs plenty of image data to be learned during the training
process. As for the dataset, there are 34 videos of steel welding taken from several welding
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(a) Image of weld spots (b) Annotated image (c) Generated mask

Figure 1. Weld spots dataset preparation

factories in Tulungagung city located in Jawa Timur, Indonesia. Each video is taken by
a camera with a resolution of 1920 × 1080 (FHD) and has 30 Frames per Second (FPS).
Then each video is extracted into several images with a range of 15 frames. This means
that every 15 frames, a frame of video is saved as image data. In other words, there will
be 2 images for each second in each video. With this mechanism, a total of 893 images
are obtained. Several examples of welding images can be seen in Figure 1(a).

The next step of creating the dataset is to give an annotation for every weld spot on
each image. In this research, VGG Image Annotator (VIA Tools) is used to draw the
polygon to determine the region of weld spot on the image [8]. From 893 images, there
are 12712 mask regions of weld spot. The annotated image with its weld spot region can
be seen in Figure 1(b). Then, these annotations are converted into a segmentation mask
programmatically using python3 programming language. These masks are used as the
ground truth for training and validation. The generated mask can be seen in Figure 1(c).
Black regions represent the background (class: 0) while the white regions represent the
weld spot on the image frames (class: 1).

2.2. CNN architecture. In this research, UNet model is adopted with a lot of modifi-
cations to the architecture and the hyperparameter tuning in accordance with the needs
of this research. In the original UNet paper [9], the architecture is divided into 2 paths
which are the contractive path and the expanding path. The contractive path of the
image is used to capture the discriminative features while the expanding path which is
symmetric to the contractive path is used to provide precise localization.

However, in this research, the architecture is divided into 3 paths which are the con-
tractive path, symmetric expanding path, and the bottleneck. The convolutional block is
also different where each block looks like a rectangular shape instead of a square. This
approach is made considering that the image size also has a rectangular shape. The
modified UNet architecture can be seen in Figure 2.

Each rectangle box in Figure 2 is a tensor with dimension of H×W×C (height × width
× channel) written in each box. The hollow arrow connecting between 2 tensors is a
convolutional block with 2 × (3 × 3) convolution, batch normalization, and rectified
linear unit (ReLU) activation followed by (2 × 2) max pooling (encoder side) or (2 ×
2) billinear upsampling (decoder side) with stride (2,2) to adjust the height and the
width of the feature map channels gradually. Meanwhile, the channel numbers of each
convolutional layer are doubled so that the feature map channels are doubled on each
block. In this architecture, batch normalization is applied to each convolutional block to
make the training process become faster and more stable through normalization [10]. The
dashed line is a skip connection to deliver the feature maps from the contractive path for
concatenation in the symmetric expanding path. The filled arrow is also a convolutional
block to produce the feature maps in the bottleneck. In this research, a comparison
between several types of convolutional blocks for the bottleneck is studied. There are
5 different convolutional blocks compared in this research which are VGG block [11],
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Figure 2. Modified UNet architecture

inception block [12], squeeze and excitation block [13], residual block [14], and dense block
[15]. Finally, a point-wise (1 × 1) convolutional layer with sigmoid activation (notched
arrow) is used to perform mask prediction. The number of output channels in the output
layer is the same as the number of classes in the dataset which is only one (weld spot).
The input size is resized to 128 × 256 with 3 channels representing the RGB of an image.
Each convolutional layer in the contractive path and the symmetric expanding path has
the kernel size of 3 × 3 with stride (1,1) and zero paddings are added to manage the size
of the output feature maps for each layer.

2.3. Metric and loss function. In the segmentation task, a Binary Cross-Entropy
(BCE) loss [16] combined with dice loss [17] is used as the loss function, and Jaccard
Index or Intersect over Union (IoU) is used as the metric function. The equation of the
loss function consisting of BCE and dice loss can be seen in (1).

LBCEdice = α

(
− 1

N

N∑
i=1

yi × log(ŷi) + (1− yi)× log(1− ŷi)

)
+ β

(
1− 2|ŷ ∩ y|

|ŷ|+ |y|

)
(1)

where N is the total neurons in the output layer (128 × 256 × 1 = 32768) representing
the width × height × number of classes, yi is the pixel value in ground-truth y, and ŷi is
the pixel value in predicted output ŷ. We set both α and β to 1 so that each loss has the
same influence on the model. In this research, a weight decay with wd = 0.0001 is also
used to penalize the model complexity and improve generalization. Thus, the total loss
can be calculated with (2).

Ltotal = LBCEdice + wd × Σw2 (2)

where w is the model weights in the entire layers. The metric is also computed to justify
the model performance during training and validation. We use the IoU score calculated
with (3) as the monitored criterion to decide the learning rate reduction and early stop
of the training process as described in Subsection 2.4.

J =
|ŷ ∩ y|
|ŷ| ∪ |y|

(3)

where J is the abbreviation for Jaccard Index or also known as the Intersect over Union
(IoU), y is the ground-truth, and ŷ is the predicted output.
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2.4. Experiment setup. The training process is conducted in a GPU-powered virtual
machine using cloud computing technique with the specification 1 × Tesla V100 provid-
ed by a Cloud Service. To obtain a model with better generalization performance, an
augmentation technique is applied to pre-processing the image. The augmentation is a
kind of rotation, resizing, normalization, saturation, contrast, and brightness [18]. For
the training process, the batch size is set to 8 and each image is resized to 128 × 256 to
fit into the model with 3 channels representing the RGB channels of the image. Thus,
the batch dimension is 8 × 128 × 256 × 3. Then, the dataset is split into the training
part and validation part with a ratio of 80 : 20. Thus, from a total of 893 images, there
will be 714 images for training data and 179 images for validation data.

In the training phase, a batch of 8 images is fed forward to the model to obtain the
predicted masks. These masks are compared to the respected ground truth to calculate
the batch loss and batch IoU score. Then, both values are averaged and used to update the
model weights during the backward propagation and early stop monitoring. This process
is repeated until all batches have already computed. After calculating the average batch
loss and average batch IoU, the average loss and average IoU over all batches in one
epoch are calculated and recorded to monitor the model performance. Then, the process
is looped over in a maximum of 1500 epochs and will be stopped if there is no improvement
on the validation IoU within 150 epochs in a row. The average batch loss and the average
loss in one epoch can be calculated with (4) and (5) respectively.

Lossbatch =
1

N

N∑
i=1

LBCEdice (4)

Loss =
1

M

M∑
i=1

Lossbatch (5)

where N is the number of images in a batch (or the batch size) which is 8, and M is the
number of batches. Meanwhile, the calculations for average batch IoU and average IoU
are similar to (4) and (5). With a total of 893 images with the composition of 714 images
as training data and 179 images as validation data, there will be 90 training batches and
23 validation batches.

Then, the overall process in the validation process is almost the same as the training
process. The difference is that in the validation process, there is no backpropagation to
update the model weights. As mentioned before, the average loss and average IoU on each
epoch is used to determine when the learning rate must be reduced by half or when the
training process will be stopped. Finally, a Stochastic Gradient Descent (SGD) algorithm
used in [19] with the initial learning rate of 0.25 and a momentum of 0.9 is used to train
the model until convergence. During the training process, the learning rate is reduced by
half if there is no reduction in the validation loss in 15 epochs in a row. The maximum
epoch is set to 1500 but the training process will stop automatically if there is no gain on
validation IoU in 150 epochs in a row.

3. Result and Discussion. As mentioned in the previous section, the criterion that is
used to determine the performance of the model is IoU and loss. During the training
process, the model’s performance on both training data and validation data is recorded.
Therefore, there will be several logs of training loss, validation loss, training IoU, and
validation IoU each for 5 kinds of convolutional blocks on the bottleneck. The comparison
result of training and validation performance between 5 different bottlenecks on each
criterion can be seen in Figure 3. It can be said that the model is not overfitting nor
underfitting where both validation loss and validation IoU are close to the training loss
and training IoU. As mentioned earlier, the training process will be stopped if there is no



1174 O. NATAN, D. U. K. PUTRI AND A. DHARMAWAN

(a) Training loss (b) Training IoU

(c) Validation loss (d) Validation IoU

Figure 3. Training and validation results

Table 1. Performance summary

Conv.
block

Highest
training IoU

Lowest
training loss

Highest
validation IoU

Lowest
validation loss

Total
epochs

Dense 0.7960 0.1374 0.7545 0.1769 409
Inception 0.7789 0.1500 0.7485 0.1812 362
Residual 0.7936 0.1388 0.7540 0.1778 658
Squeeze 0.7996 0.1341 0.7530 0.1782 443
VGG 0.7800 0.1494 0.7502 0.1803 647

gain on validation IoU. This is the reason why each model can have different total epochs
for the training process. For more details, the comparison result can be seen in Table 1.
The squeeze block has the best result on training data with an IoU score of 0.7996 and

a loss of 0.1341 followed by the dense block as the runner up with an IoU score of 0.7960
and loss of 0.1374. On the validation data, the dense block has the best performance with
an IoU score of 0.7545 and a loss of 0.1769 followed by the residual block as the runner up
with an IoU score of 0.7540 and loss of 0.1778. Among all of the training processes, the
inception block has the fastest convergence time with total epochs of 362 followed by the
dense block as the runner-up with total epochs of 409. In the context of deep learning,
model convergence means that the model has learned properly to respond to a set of
training patterns with some error margin [20]. From those criterions, the highest IoU and
lowest loss in the validation data are considered as the main criterions to determine the
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(a) Input image (b) Predicted mask (c) Applied mask to frame

Figure 4. Inference result

best model performance. From the training process, it is known that the model’s weights
are updated based on the training data. Therefore, having the best result in training
data but average or even bad performance on validation data means nothing. Having
the fastest convergence time also means nothing if the performance of the model is not
good enough since this criterion is ignored for deployment. However, if the model has the
highest validation score on IoU or the lowest validation score on loss, it means that the
model has better generalization when it is deployed. Thus, it can be concluded that UNet
architecture with a dense convolutional block on its bottleneck has the best performance
among the others since it has the best result on validation data. The other reason is that
this model achieves top-2 on training IoU, validation loss, and convergence time. The
model inference result on the test image can be seen in Figure 4.

4. Conclusion and Future Work. From the experiment, it is concluded that the UN-
et model with a dense convolutional block on its bottleneck has the best performance
compared to the others. The dense block is considered as the best model based on the
best result in validation IoU and validation loss which are chosen as the main parameters.
Besides that, the dense block also achieves top-2 in the highest training IoU, lowest train-
ing loss, and fastest convergence time. The dense block has the highest validation IoU
of 0.7545, lowest validation loss of 0.1769, runner up in training IoU, training loss, and
convergence time with a score of 0.7960, 0.1374, and 409 epochs respectively. The reason
validation IoU and validation loss are considered as the main parameter is because they
indicate the model’s generalization ability on unseen data (the data outside the training
data) when the model is deployed. Meanwhile, training IoU, training loss, and conver-
gence time are considered as supplementary parameters to judge the model performance
since they indicate nothing for the models deployment and inference.

As for future works, there are several interesting things to be studied further. The
first one is about extending the model’s capability to recognize the welding quality and
its defects. Formulating the algorithm for post-processing to count the number of weld
spots is also an interesting study. Secondly, it could be interesting if all convolutional
blocks on the entire architecture (in the contractive path, symmetric expanding path, and
bottleneck) are modified or even using the Nested UNet (UNet++) instead of normal UNet
as the main architecture. Then, the issue of hyperparameter tuning such as choosing the
optimizer, learning rate, tensor dimension, and activation function, can be also challenging
research in the future. Instead of tuning the parameter empirically, it would be good if
the parameter can be tuned automatically or searched using a certain algorithm to find
the best combination. Finally, when it comes to the deployment, the model size and
complexity must be considered to achieve the fastest inference time on a specific device.
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