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Abstract. The impact of design patterns on software quality attributes provides a sup-
port for decision-making during software design and refactoring. This article presents
a metrics-based approach to address the impact of design pattern instances on software
maintainability and understandability. This approach classifies system classes into two
groups: classes that are playing roles in design patterns (pattern classes) and classes
that are not playing roles in design patterns (non-pattern classes). Size, coupling and
inheritance metrics were calculated for both groups using JHawk, a Java metrics tool.
Furthermore, the participation percentage (for both groups) in the whole metric value was
calculated. The correlation of metrics to software maintainability and understandability
presented by previous research studies has been used. The experiment results illustrate
that design pattern classes have fewer roles in size and inheritance metrics than do non-
pattern classes, a sign that design pattern classes enhance software understandability and
maintainability.
Keywords: Design patterns, Software quality, Maintainability, Understandability, Soft-
ware metrics, Gang of four, Design templates

1. Introduction. Design patterns are the focus of many works studying their relevance,
visualization and identification, with the hypothesis that their use improves quality. Gam-
ma et al. – henceforth GoF – claim in the preface of their book: “You will have insight
that makes your own designs more flexible, modular, reusable and understandable” [1].

GoF describes through discussions how design patterns support adaptability and are
expected to promote software evolution; they ease maintenance tasks by explicitly identi-
fying class roles and by localizing where extensions and change should occur [1]. However,
the authors did not validate empirically the benefits to software development projects.
One benefit, for example, is that design patterns promote adaptability by supporting
modifications through specialization. Developers can adapt a system built using these
patterns by creating new concrete classes with desired functionality rather than by direct
modifications to existing classes. However, design patterns usually lead to an increased
number of software artifacts, such as classes, associations and delegations, which increase
the static complexity of a software system. This article aims to address whether the
classes playing roles in design patterns have better software metrics than do other class-
es in the system. Higher values of certain software metrics indicate good quality (e.g.,
cohesion). In contrast, higher values of other software metrics indicate bad quality (e.g.,
coupling between objects). This will provide an indication of how the implementation of
design pattern instances affects the quality of a subject system. The focus of previous
research studies was on the detection of design patterns [2]. Some studies claim that
the implementation of certain design patterns has a positive impact on the quality of
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software systems. In contrast, other studies claim that the implementation of the same
design patterns has a negative impact on software quality.
The systematic literature review presented by Wedyan and Abufakher shows that doc-

umentation of patterns, size of pattern classes, and the scattering degree of patterns have
clear impact on quality [3]. The study presented by Kermansaravi et al. addressed the
bidirectional mutations between design patterns and design anti-patterns and the impacts
of these mutations on software change- and fault-proneness. The results show that some
mutations of design anti-patterns and design patterns are faultier in specific contexts [4].
Laosen et al. [5] presented an automatic approach for ranking and recommending GoF
patterns where design-pattern vectors, representing the GoF patterns in terms of the
problem types they address, are constructed based on the design pattern intent ontology
(DPIO) developed by Kampffmeyer. The study presented by Khomh and Guéhéneuc in
[6] has identified seven main themes of design patterns in software development: forward
engineering, reverse engineering, documentation, knowledge sharing, development tools,
formalization and quality. The authors argued that the research community should fol-
low examples set in other research fields and systematically define, relate, categorize and
classify design patterns.
Gravino and Risi presented a study which followed a similar approach to that we are

introducing here in this article [7]. They analyzed at the class level the quality of soft-
ware portions of ten software systems including classes participating in design patterns
instances with respect to the remaining software portions. The study claimed that the
use of design patterns impacts the quality of the software. However, the study of Gravino
and Risi [7] was limited to the CK (Chidamber and Kermerer) measure values and there
were no correlations between these metrics and the quality of the subject systems [8].
Scanniello et al. studied the importance of documenting design pattern instances and

how it can affect the comprehensibility of source code [9]. The results showed that doc-
umenting design patterns yields an improvement in correctness of understanding source
code for participants who have an adequate level of experience.
Ampatzoglou et al. presented a case study to investigate the stability of classes that

participate in instances of GoF design patterns [10]. They examined whether the stability
of these classes is affected by the pattern type, the role that the class plays in the pattern,
the number of pattern occurrences in which the class participates, and the application
domain. The results suggested that classes that participate in coupled pattern occurrences
appear to be the least stable.
The remaining of this article is organized as follows. Section Two outlines a methodol-

ogy to address the impact of design patterns, using software metrics and design pattern
occurrences, on software maintainability and understandability. The experiments and
results are presented in Section Three. Finally, conclusions are summarized in Section
Four.

2. Methodological Approach. There is no formal theory that links design patterns to
software quality concepts. However, it has been claimed that the use of design patterns
provides several advantages, such as increased reusability and improved maintainability
and comprehensibility of existing systems.
The methodology presented in this article relies on software metrics, which are useful

measurements for characterizing software systems, in an attempt to assess the impact of
design patterns on software maintainability and understandability. Specifically, software
design metrics for all system classes, at the class level, will be calculated to investigate
whether a safe conclusion can be drawn regarding the impact of design patterns on soft-
ware maintainability and understandability. To calculate the required metrics, a Java
metrics tool named JHawk has been used. We used the latest version of JHawk, v6.1.3,
under the academic license granted from virtual machinery [11].
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2.1. A metrics-based approach. Figure 1 presents a metrics-based approach to assess
the impact of design pattern instances on software quality attributes. As mentioned
above, all metrics will be calculated using JHawk at the class level. The steps of the
metrics-based approach could be summarized as follows.

• Recover design pattern instances from each subject system.
• For each design instance, determine its participant classes.
• Classify system classes into two groups: classes that play roles in design patterns
(henceforth pattern classes) and classes that do not (henceforth non-pattern classes).

• Calculate size, coupling and inheritance metrics for all system’s classes.
• For each class in the system, calculate the percentage of participation in the whole
system metric value.

• Calculate the percentage of participation in the whole metric value for both groups:
pattern classes and non-pattern classes.

• Correlate software metrics to quality attributes using previous research studies.

Figure 1. A metrics-based approach to assess the impact of design patterns

The input of the metrics-based approach is the source code of the subject system,
whereas the output is the percentage of participation for both groups in the whole metric
value. The participation percentage of each individual class is calculated based on the
whole system metric value. For example, if the whole system coupling, calculated by
JHawk, was 1396 and a class has a coupling value of 65, then its participation percentage in
the whole system coupling (whole metric value) could be calculated as (65/1396)×100% =
4.66%. Hence, the participation percentage for all classes in the system could be calculated
in the same manner.

Based on a validated set of design pattern instances recovered using our research proto-
type MLDA (a Multiple Level Detection Approach for design patterns recovery) [12-14],
all classes participating in design patterns were determined in eight subject systems. More
specifically, we referred to the all publicly published results in the available literature to
generate a list of design pattern instances implemented in subject systems. We used the
repository of Perceron [15], the design pattern detection tools benchmark platform [16]
and P-MARt [17] as the main benchmarks for validating the recovered design instances
using MLDA. Hence, the presented list of design pattern instances for all subject systems
was validated based on the common agreement in the available literature.

A design pattern instance should reflect the required pattern structure and behaviour
presented by the GoF [1]. Pattern’s participant classes form a design pattern instance or
occurrence. For example, classes Adapter, Adaptee and Target (grouped together) form
one instance of the Adapter design pattern. The investigated systems are JHotDraw,
JRefactory, JUnit, QuickUML, Lexi, MapperXML, Nutch, and PMD. Furthermore, the
following software metrics will be calculated [8,18]: Number of Methods (NOM), Lack
of Cohesion of Methods (LCOM), Total Response for Class (RFC), Coupling between
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Objects (CBO), Total Lines of Code (LOC), Fan-IN (F-IN), Depth of Inheritance Tree
(DIT), Number of Children (NOC), Cohesion (COH), and Fan-OUT (F-OUT). The se-
lection of these metrics was made since they have a key role in characterizing the quality
of software systems. More specifically, these metrics reflect the key aspects of any object-
oriented program, i.e., size, coupling and inheritance [18,19].

2.2. Correlation of software metrics to quality attributes. The external behaviour
of software systems can be recognized based on its internal metrics. Several studies were
presented in the literature to correlate the impact of calculated software metrics with
quality attributes. This correlation was made based on certain statistical analysis and
experiments. The impact can be positive or negative, or there can be no impact at all.
We are trying to address the impact of design patterns on software understandability and
maintainability since they are the most commonly investigated quality attributes. Table 1
illustrates the correlated impact of NOM, LOC, RFC, CBO, LCOM, COH, F-IN, F-OUT,
DIT and NOC on software understandability and maintainability.

Table 1. The correlation between software metrics and software under-
standability and maintainability

Software quality/metrics Understandability Maintainability

Size
NOM H H
LOC H H

Coupling

RFC H H
CBO H H
LCOM H H
COH N N
F-IN H H

F-OUT J I J I
Inheritance

DIT H H
NOC H H

N Positive impact H Negative impact J I No impact

This correlation was made based on the correlation presented by [20]. This study was
selected since it has significant correlation levels. However, to the best of our knowledge,
there are no studies that contradict the reported impact presented by the selected study.
The positive impact (N) of a metric indicates that high values of that metric are desirable.
On the other hand, a metric’s negative impact (H) indicates that high values of that
metric are not desirable. Table 1 demonstrates that most of the selected metrics have
a negative impact on software maintainability and understandability (i.e., high values of
these metrics are a sign of bad quality). The cohesion metric has been reported to have a
positive impact on understandability and maintainability efforts, whereas F-OUT has no
impact at all.

3. Results and Discussion. All the experiments have been run on with Intel Core i5-
2400 CPU. JHawk calculated the required software metrics for all subject systems. The
calculation process was quite fast where JHawk spent only a few seconds to generate
the results. Furthermore, based on a validated set of design pattern instances recovered
using our research prototype, MLDA, two sets of classes were created: pattern classes and
non-pattern classes.
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3.1. Recovered design pattern instances. Table 2 presents the number of design
pattern instances implemented in all subject systems, as they are recovered by MLDA
and as they are validated based on all public published results in the available literature
(i.e., the number of implemented design instances in a subject system is the number of
true positive instances plus the number of false negative instances). Hence, all classes
that are playing roles in design patterns were identified. As Table 2 demonstrates, 1051
design pattern instances were implemented in all subject systems.

Table 2. Total number of design pattern instances implemented in subject systems

Type Design pattern
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Creational patterns

Singleton 2 12 0 1 2 2 4 3
Prototype 2 0 0 0 1 0 1 0

Abstract factory 0 0 0 1 0 0 2 2
Factory method 2 87 2 18 0 5 32 22

Builder 0 2 0 1 0 0 16 1

Structural patterns

Adapter 11 16 11 29 30 44 87 41
Bridge 4 0 0 1 0 0 1 0

Composite 1 0 1 1 3 0 0 1
Decorator 3 1 1 3 0 4 0 0
Façade 1 2 0 1 1 1 1 1

Flyweight 1 0 0 1 1 1 0 1
Proxy 0 0 0 2 0 4 4 0

Behavioral patterns

COR 0 0 0 0 0 0 1 0
Command 9 25 0 18 6 25 3 26
Interpreter 0 0 0 0 0 0 0 0
Iterator 0 0 1 0 0 1 0 0
Mediator 0 0 0 0 0 0 0 0
Memento 0 0 0 0 10 1 1 12
Observer 2 0 1 1 0 0 1 3

State/Strategy 6 11 3 10 1 113 21 11
Visitor 2 2 0 0 0 0 1 0

Template method 4 4 1 3 0 7 108 56
Total 50 162 21 91 55 208 284 180

3.2. Participation percentage in the whole metric value. After the identification
of all design pattern instances in all subject systems, the number of classes playing roles
in design patterns, the number of classes playing roles in structural, creational and be-
havioural instances and the number of classes playing more than one role have been
identified.

Table 3 presents the total number of classes playing roles in design patterns for all
subject systems. A class may play more than one role and participant in two or more
different design patterns. The percentage of design patterns in a subject system is the
percentage of classes playing roles in design patterns to the total system classes. Around
40% of the subject systems’ classes participate and play roles in design patterns.

Table 4 illustrates the average percentage of participation in the whole metric value for
both pattern classes and non-pattern classes in all subject systems. Consistent behaviour
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Table 3. The number of classes playing roles in design patterns in all
subject systems

Number of classes/subject systems
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Total number of classes 201 612 112 145 170 398 570 374
NCPR in creational instances 8 122 3 37 24 12 83 52
NCPR in structural instances 35 35 30 66 43 100 112 79
NCPR in behavioral instances 30 80 10 39 20 82 155 114
Number of classes playing more than one
role

17 48 5 37 25 54 133 76

NCPR in all design pattern instances 56 189 38 105 62 140 217 169
Percentage of design pattern classes to
the total system classes

28% 31% 34% 72% 36% 35% 38% 45%

Note. NCPR: Number of classes playing roles

can be noticed for size and inheritance metrics. These metrics negatively affect the main-
tainability and understandability of a subject system. More specifically, the calculated
averages for size and inheritance metrics indicate that the participation of pattern classes,
in the whole metric value, is less than that of the other classes in the system. Hence, total
system size and inheritance were shaped based on the non-pattern classes. On the other
hand, the average participation of the pattern classes in the whole coupling metrics, ex-
cept RFC, is higher than that of the other classes in the system. Both groups participate
almost equally in the average RFC metric. The functionality of the system might be
relying on the design pattern classes (i.e., design pattern classes provide key functionality
to the system) which require interacting and collaboration between pattern classes and
other classes in the system. This could explain why the participation of design pattern
classes, in the whole system coupling, is higher than that of other classes in the system.
Furthermore, whole system cohesion was formulated based on the non-pattern classes,
which contradicts the common belief that the implementation of design pattern enhances
system cohesion. Consequently, the participation of pattern classes in five out of nine
metrics is less than that of other classes in the system. These metrics have a negative im-
pact on software maintainability and understandability. The pattern participant classes
provide the key functionality to the system, which may explain why these classes tend to
couple and interact with other classes.
In addition, the whole system cohesion was formulated based on the non-pattern classes.

High value of cohesion is desirable. Non-pattern classes implement more methods than do
pattern classes in all subject systems, except in PMD and MapperXML. Pattern classes
of PMD and MapperXML have RFC, CBO and F-IN higher than non-pattern classes do.
This could be explained by investigating the implemented design instances in these two
systems where most of the implemented instances are behavioural instances.
Furthermore, in most subject systems, pattern classes have fewer cohesion values than

do non-pattern classes. Consequently, whole system cohesion relies on the non-pattern
classes. This is a sign of the improper use of pattern classes where they perform more than
a single purpose function. The inheritance metrics, depth of inheritance tree and number
of children of pattern classes for all subject systems are all fewer than those of non-pattern
classes. Hence, pattern classes require less maintainability and understandability effort.
Pattern classes of F-OUT metric, which has been reported to have no impact on software
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Table 4. The average participation percentage in the whole metric value
for both classes groups in all subject systems

Number of classes/subject systems
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JHotDraw

CR-Pattern classes % 31 11 22 26 30 33 15 25 15 14
SR-Pattern classes % 9 3 15 8 4 11 7 2 12 4
BE-Pattern classes % 12 11 18 16 12 12 10 11 17 11
Non-pattern classes % 48 75 45 50 54 44 68 62 56 71

JRefactory

CR-Pattern classes % 15 23 18 18 17 15 15 18 21 15
SR-Pattern classes % 8 3 5 4 5 14 1 6 2 4
BE-Pattern classes % 11 8 12 14 13 11 7 9 9 5
Non-pattern classes % 66 66 65 64 65 60 77 67 68 76

Junit

CR-Pattern classes % 14 15 14 20 10 35 8 15 15 10
SR-Pattern classes % 6 3 4 11 3 6 3 6 8 2
BE-Pattern classes % 6 6 8 11 10 19 3 11 5 1
Non-pattern classes % 74 76 74 58 77 40 86 68 72 87

QuickUML

CR-Pattern classes % 21 11 23 31 22 38 18 20 30 44
SR-Pattern classes % 6 8 7 5 14 16 6 2 13 10
BE-Pattern classes % 22 7 20 24 12 12 7 10 8 15
Non-pattern classes % 51 74 50 40 52 34 69 68 49 31

Lexi

CR-Pattern classes % 33 15 21 22 21 41 8 3 16 30
SR-Pattern classes % 11 1 11 14 12 14 1 2 5 8
BE-Pattern classes % 11 5 13 10 8 11 3 3 4 12
Non-pattern classes % 45 79 55 54 59 34 88 92 75 50

Nutch

CR-Pattern classes % 21 9 22 22 30 41 9 12 22 NA
SR-Pattern classes % 10 1 11 10 1 16 3 2 11 NA
BE-Pattern classes % 10 6 7 23 7 9 9 7 10 NA
Non-pattern classes % 59 84 60 45 62 34 79 79 57 NA

PMD

CR-Pattern classes % 55 24 44 26 38 50 31 13 45 15
SR-Pattern classes % 2 2 1 21 8 8 1 12 3 3
BE-Pattern classes % 13 9 21 20 21 22 12 10 12 9
Non-pattern classes % 30 65 34 33 33 20 56 65 40 73

MapperXML

CR-Pattern classes % 30 35 34 40 32 30 33 33 35 11
SR-Pattern classes % 15 9 4 13 4 21 9 3 2 5
BE-Pattern classes % 21 22 30 22 30 25 14 20 39 3
Non-pattern classes % 34 34 32 25 34 24 44 44 24 81

CR-Pattern classes: classes that play roles in creational design pattern instances;
SR-Pattern classes: classes that play roles in structural design pattern instances;
BE-Pattern classes: classes that play roles in behavioral design pattern instances;
Non-patterns classes: classes that do not play roles in design patterns.

maintainability and understandability, have fewer metric values than non-pattern classes.
Consistent with other coupling metrics, pattern classes of PMD and MapperXML have
fewer F-OUT metric values than other classes in the system since most of their design
instances are behavioural instances. We noticed that whole system coupling and cohesion
was directly affected by the implementation of behavioural design instances. Classes
playing roles and participating in behavioural patterns have higher coupling and lower
cohesion than do other classes in the system.
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4. Conclusion. A metrics-based approach has been presented in an attempt to address
the impact of design pattern instances on software maintainability and understandability.
The metrics-based approach could not reach a safe conclusion regarding the impact of
design patterns on software understandability and maintainability. However, the metrics-
based approach shows that classes that play roles in design patterns have better inheri-
tance and size metrics than do non-pattern classes. This gives a sign that design patterns
enhance software understandability and maintainability. The whole system inheritance
and size metrics rely on the pattern classes. In contrast, non-pattern classes have better
coupling metrics than do pattern classes where the whole system coupling relies on the
pattern classes.
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