
ICIC Express Letters
Part B: Applications ICIC International c⃝2021 ISSN 2185-2766
Volume 12, Number 11, November 2021 pp. 1019–1026

OPEN-SOURCE MACHINE LEARNING SOFTWARE SYSTEMS:
ARCHITECTURAL ANALYSIS

Mamdouh Alenezi1 and Mohammed Akour1,2,∗

1Computer Science Department
Prince Sultan University

Riyadh 11586, Saudi Arabia
malenezi@psu.edu.sa

2Information Systems Department
Yarmouk University
Irbid 21163, Jordan

∗Corresponding author: mohammed.akour@yu.edu.jo

Received March 2021; accepted May 2021

Abstract. Machine learning is becoming popular gradually due to the widespread use
of AI in different applications ranging from user-specific applications to scientific ap-
plications. Machine learning models are usually employed in application programs with
the help of open-source machine learning software systems. There is a need to analyze
the architecture of such systems. In this work, we chose four different popular open-
source machine learning software systems to analyze their architecture. These systems
are TensorFlow, Microsoft Cognitive Toolkit, Caffe, Mxnet. We recovered their archi-
tecture through a re-engineering approach to building their UML class diagram, Package
diagram using the StarUml tool. We analyzed and studied the characteristics of the ar-
chitecture by using software engineering metrics from the literature. We compared and
discussed the open-source machine learning software systems. It is very clear that the
architecture quality was not valued heavily in the envision of these systems. In the fu-
ture, we will investigate more software artifacts and software engineering metrics of these
open-source machine learning software systems.
Keywords: Machine learning, Software architecture quality, Reverse engineering, Open-
source machine learning software systems

1. Introduction. Machine learning is one of the branches of Artificial Intelligence (AI).
Usually, in this branch of AI, applications and systems are constructed by giving input to a
machine learning module that provides prediction as output. The field of machine learning
has accelerated the development of many fields, such as speech recognition, video classifi-
cation, object recognition, and fatigue estimation [1]. Such development has resulted due
to the advancements of machine learning models and developments of software platforms,
which help in training sophisticated advanced models that use a huge amount of com-
putational resources. To facilitate application for the developers and people involved in
sophisticated AI applications, many open-source machine learning software systems can
be found on the Internet. These applications are easy to download and use [2,3]. Due
to the widespread usage of machine learning software systems, there is a growing need
to understand software architecture to support tasks like re-engineering. Software archi-
tecture recovery is a technique to understand the structural characteristics and layout of
the software, usually from the source code [4]. There are various techniques of software
architecture recovery approaches and these are broadly classified as clustering-based tech-
niques and pattern-based techniques. Therefore, software architecture recovery consists
of methods to extract architectural information from source code.

DOI: 10.24507/icicelb.12.11.1019

1019



1020 M. ALENEZI AND M. AKOUR

The rise of artificial intelligence resulted in huge demand for AI and machine learning
skills. Machine Learning (ML) based technology is now being used in almost the indus-
tries, i.e., finance, and health care. Demand for machine learning and artificial intelligence
is growing exponentially. Machine learning techniques and systems are very commonly
used in diverse researches [5-10].
As a result, the community has increased due to this ever-increasing demand, and this

led to the evolution of AI frameworks which makes learning AI much easier. ML develop-
ers are looking for an appropriate framework for a variety of projects for ML application
development. ML frameworks assist ML developers to define ML models. ML frameworks
enable developers to select the pre-built model and optimize components which usually
help in model building. Most of the ML frameworks are open-source. Like any other open-
source software, open-source machine learning frameworks are vulnerable; hence, they can
be subjected to various security attacks. Therefore, it becomes imminent to study the
architecture of the machine learning framework. Therefore, in this paper, we selected pop-
ular open-source machine learning frameworks used nowadays. Furthermore, we studied
the architectural characteristics of this open-source machine learning framework.
To understand the structural characteristics of famous open-source machine learning

software systems, we compiled a technical report of 4 frameworks, i.e., TensorFlow, Mi-
crosoft Cognitive Toolkit, Caffe, and Mxnet. For each of the software systems, we ex-
tracted the UML class diagram, package diagram. Also, we studied and analyzed the
structural characteristics of the famous software systems by using standard software en-
gineering metrics [11].
This research paper has been organized as follows. Section 2 summarizes the related

work. Section 3 presents the methodology and tools used for the architecture recovery of
the open-source machine learning software systems. Section 4 discusses the experimental
evaluation that includes metrics and software architecture analysis of the addressed sys-
tems. Moreover, the comparison results are presented in this section. The conclusion of
the paper has been outlined in Section 5.

2. Related Work. Software architecture recovery is the most widely applied technique
to analyze software architecture. The architecture recovery process recovers system archi-
tecture from the artifacts like source code. This helps the software engineers to understand
the whole system and evaluate it. It also helps in analyzing the probable changes of the
system on the architecture. Another reason to recover the architecture is to get hold
of useful information about the architecture whether it fits the desired style or whether
the architecture has probable anti-patterns which are often referred to as architectural
smells [12]. Such a process usually results in rearranging the architecture to fit it in the
desired style. Sometimes the issues might be fixed. Usually, this comes into effect in the
upcoming versions of the software system. Architecture recovery helps in analyzing the
situation and helps the software engineers to judge whether they are on the right track.
The process also assists in maintaining the software system. Numerous research studies
have been done on recovering software architecture for analyzing the architecture. We
will discuss them in the subsequent paragraphs.
In [13], the authors extracted the software architecture of the popular open-source Linux

operating system. The authors think that the Linux kernel, in particular, is an excellent
candidate for architectural recovery. It is said that Linux has an interesting structure.
Also, Linux is growing rapidly; it is estimated that the source code is doubling every year.
The authors in [14] recovered the architecture of Apache web server 1.3 for examining
the complexity of the software system. The authors share the experiences of conducting
the architecture recovery process that was performed by the students of the course. In
[15], the authors recovered the software architecture of web applications. Moreover, the



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.12, NO.11, 2021 1021

authors developed tools that can parse and extract relations among the components of
web applications. The tools use the source code to extract the artifacts.

The authors in [16] reverse engineer an application that has a significant dynamic linking
within its implementation. Nautilus file manager is selected to recover the architecture.
The lack of design documents makes this file manager an excellent candidate for archi-
tecture recovery. The increasing trend of using dynamic linking in open-source software
leads to a wide range of opportunities for architectural analysis. Other such efforts of
software architecture recovery can be found in [17] where the authors recovered the archi-
tecture of real-time train control systems. The recovered architecture helps in assessing
the quality of the software architecture. In a similar work [18], the authors recovered the
architecture of the subsystem of the train control system. Microservice architectural style
is adopted by most of the current software applications. The authors in [19] proposed
an architectural recovery tool for microservice-based applications. The authors study the
complexity of the architecture. The authors in [20] recovered the software architecture of
automotive embedded systems. Software architecture is recovered from the source code.

From the studies discussed above, it is evident that software architecture recovery has
been performed by the software engineers to analyze the architecture. We presented ar-
chitecture recovery of various heterogeneous software applications. Furthermore, in the
literature, a comparative analysis of software architecture recovery techniques can be
found in [21]. A set of eight architectures recovered from open-source systems was taken
as model architecture to compare six state-of-the-art architectures. Metrics were used
to analyze each technique with the ability to recognize the systems’ architectural com-
ponents and the whole architectural structure. The systems analyzed are Algorithm for
Comprehension-Driven Clustering (ACDC) [22], Architecture Recovery using Concerns
(ARC) [23], Bunch [24], scaLableInforMationBOttleneck (LIMBO) [25], and Weighted
Combined Algorithm (WCA) [26]. The authors in [15] analyzed the source code and
binaries of web applications. With the information extracted the authors performed alge-
braic manipulations to generate architecture diagrams highlighting the main components
of web application and interactions among the components. Pattern matching and data
mining techniques have been used for software architecture recovery which can be found
in literature in [27,28]. With this contextual premise as a reference, the authors of this
research paper have discussed the framework of software architecture recovery in the next
section.

3. Research Methodology. In this section, we will discuss the methodology and tools
used for the architecture recovery of the open-source machine learning software system
presented in this paper. We used StarUML for recovering the software artifacts from
the source code of the machine learning software systems. StarUML is a UML tool put
forward by MKLab. It supports most of the diagrams in UML 2.0. The tool supports
MDA (Model Driven Architecture) with the support of the UM profile concept, and at
the same time, it enables the generation of code in multiple languages.

To study the architecture of the open-source machine learning software systems, we
recovered the package diagram from source code. Apart from these artifacts, we ana-
lyzed the architecture using the software engineering metrics, see Figure 1, to describe
the characteristics of the architecture [28-34]. We focus on four main aspects of the archi-
tecture, namely, size, coupling, cohesion, and complexity. For analyzing the architecture,
the selected metrics are shown in Table 1.

4. Experimental Results. In this section, we discuss in detail the experimental evalu-
ation and results of the addressed systems.



1022 M. ALENEZI AND M. AKOUR

Figure 1. Software architecture metrics

Table 1. Software architecture analysis: TensorFlow

Complexity Size
Number of links 27 Number of connectors 27

Number of types of
communication mechanisms

2 Number of components 11

Number of children 118 Number of processing units 0
Number of persistent components 0

Coupling Cohesion
Number of external interfaces 0 Number of services 0
Number of internal interfaces 9 Number of local methods 544

Number of associations per class 16
Number of dependencies 0

4.1. TensorFlow. We analyzed the software architecture by using standard software
engineering metrics. From the software architecture metrics, it can be observed that the
architecture is not big in size, maintainable, and good. Also, the class diagram contains
more than 100 children, local methods in which the class diagram is not too complex.
Table 1 summarized the results of extracted software architecture metrics.

4.2. Microsoft Cognitive Toolkit. Under the Microsoft package, the children are four-
level deep. We analyzed the software architecture of the cognitive toolkit. It can be
observed from the metrics that the software architecture is not maintainable as there
are less cohesion and coupling. Also, the class diagram is complex with 1577 methods,
494 children, and 62 attributes. Table 2 summarized the results of extracted software
architecture metrics.

4.3. Caffe. There is one child under the Caffe folder. We have analyzed the software
architecture. The architecture is not maintainable with no coupling and cohesion. The
class diagram is also not complex with 19 methods and 11 generalizations. Table 3
summarizes the results of extracted software architecture metrics.

4.4. Mxnet. Under the Mxnet folder, the children are three levels deep. We analyzed
the software architecture. It is observed that the architecture is less maintainable. The
class diagram is not that complex with 176 methods, 76 children. Table 4 summarized
the results of extracted software architecture metrics.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.12, NO.11, 2021 1023

Table 2. Software architecture analysis: Microsoft Cognitive Toolkit

Complexity Size
Number of links 0 Number of connectors 16

Number of types of
communication mechanisms

1 Number of components 0

Number of children 494 Number of processing units 0
Number of persistent components 0

Coupling Cohesion
Number of external interfaces 0 Number of services 0
Number of internal interfaces 0 Number of local methods 1577

Number of associations per class 16
Number of dependencies 0

Table 3. Software architecture analysis: Caffe

Complexity Size
Number of links 0 Number of connectors 11

Number of types of
communication mechanisms

0 Number of components 0

Number of children 0 Number of processing units 0
Number of persistent components 0

Coupling Cohesion
Number of external interfaces 0 Number of services 0
Number of internal interfaces 0 Number of local methods 19

Number of associations per class 0
Number of dependencies 0

Table 4. Software architecture analysis: Mxnet

Complexity Size
Number of links 16 Number of connectors 16

Number of types of
communication mechanisms

2 Number of components 0

Number of children 76 Number of processing units 0
Number of persistent components 0

Coupling Cohesion
Number of external interfaces 0 Number of services 0
Number of internal interfaces 0 Number of local methods 185

Number of associations per class 16
Number of dependencies 0

4.5. Systems comparisons. The summary of the machine learning software systems is
shown in Table 5. Among the open-source machine learning, software systems analyzed
TensorFlow, Microsoft Cognitive Toolkit, and Mxnet are more complex within the archi-
tecture. At the same time, the architecture of the three open sources of machine learning
software systems is well organized and follows object-oriented principles. TensorFlow has
the highest number of lines of code with 4.5 KLOC as compared to the other open-source
machine learning software systems.

Package diagrams of Mxnet, Microsoft Cognitive Toolkit, and TensorFlow are com-
parable as the architecture has a two-level hierarchy and it is not deeper than 2 to 3



1024 M. ALENEZI AND M. AKOUR

Table 5. Summary of open-source machine learning software systems

Machine learning software systems Version Number of classes KLOC
TensorFlow 1.14.0 117 4.5

Cognitive Toolkit 2.7 40 3.8
Caffe 1.0 11 3.6
Mxnet 1.5.0 112 3.3

levels. In addition, the number of packages in the architecture mentioned above is almost
comparable. In Caffe, there are two packages.
When comparing the complexity of the open-source machine learning software systems

TensorFlow, Microsoft Cognitive Toolkit, and Mxnet have the most number of local
methods. Several associations per class of TensorFlow, Microsoft Cognitive Toolkit, and
Mxnetis are almost similar. Both the number of local methods and associations indicate
the complexity of the class diagram. This means that TensorFlow, Microsoft Cognitive
Toolkit, and Mxnet have complex UML class diagrams. The number of child classes is the
most in TensorFlow, Microsoft Cognitive Toolkit, and Mxnet UML class diagram. Child
classes indicate the level of hierarchy within the UML class diagram. This means that the
TensorFlow, Microsoft Cognitive Toolkit, and Mxnet have a deep hierarchy which shows
the complex nature of the UML class diagram. Also, the number of generalizations is
the most in Microsoft Cognitive Toolkit. The generalization relationship is based on a
link in which one model element (child) is based on another element (parent). Hence, the
number of generalizations depicts the structural complexity of the UML class diagram.
This means that Microsoft Cognitive Toolkit is even more complicated in the structure
besides having a high number of child classes; it also has a high number of generalizations.
By looking at the UML class diagram of all four open-source machine learning soft-

ware systems, we can see that the UML class diagram of Microsoft Cognitive Toolkit
and Mxnet is quite complex in structure. Furthermore, it can easily be observed from
the diagram that the two have the most number of links among the classes within the
architecture. And the two open-source machine learning software systems have the most
number of classes within the architecture. Among the open-source, machine learning soft-
ware systems Caffe has unnamed classes within the architecture. It is easy to observe that
the UML class diagram is also not complex as compared to other open-source machine
learning software systems. The UML class diagram of Microsoft Cognitive Toolkit has
no links within the architecture. The package diagram of Mxnet has a package with the
most dependencies with other packages of the architecture. Mxnet package has the most
numbers of dependent packages in the architecture also op package within the architec-
ture has most dependencies with other packages in the architecture. The package diagram
of Microsoft Cognitive Toolkit has a high number of levels within the package architec-
ture. Msra package has the most number of dependencies within the architecture. Table
6 shows a class diagram complexity summary of open source machine learning software
systems.

5. Conclusions. In this paper, we have analyzed the software architecture of the popular
open-source machine learning software systems. Star UML tools were used to recover the
software artifacts from the source code. Also, we analyzed the characteristics of software
architectures by using software engineering metrics from the literature. Four famous
open-source machine learning software systems were selected for recovering the software
artifacts. These are TensorFlow, Microsoft Cognitive Toolkit, Caffe, and Mxnet. For each
of the architectures, we extracted the UML class diagram, package diagram and studied
the architectural characteristics by using the proposed software engineering metrics. At
the end of the study, we compared the recovered open-source machine learning software



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.12, NO.11, 2021 1025

Table 6. Class diagram complexity summary of open-source machine
learning software systems

Metric TensorFlow
Microsoft
Cognitive
Toolkit

Caffe Mxnet

Number of connectors 27 16 11 16
Number of children 118 494 0 76

Number of local methods 544 1577 19 185
Number of associations per class 16 16 0 16

systems and found out that TensorFlow, Mxnet, and Microsoft Cognitive Toolkit are more
complicated than the other architecture and more organized following the object-oriented
principles.

As future work, we plan to investigate more artifacts extracted from the source code
of the open-source machine learning software systems. Also, we plan to look for more
metrics to describe the characteristics of software architecture. Software stability metrics
are proposed in [23] for the class, architecture, and system level. It is possible to extract
architectural parameters by using tools like SD metric. The methodology of extracting
metrics from the tools can be found in the literature, such as in [25]. The authors used
SD metric tools to assess the internal quality of the structural and behavior diagram
of UML. Measurement of metrics early in the development phase leads to good quality
software. Inspired by such work, we plan to extract as many characteristics as we can from
the architecture by using the source code of the open-source machine learning software
systems. If required, we may use tools to gain a better understanding of the architectural
metrics.

REFERENCES

[1] Y. G. Gordienko, S. Stirenko, Y. P. Kochura, O. Alienin, M. Novotarskiy and N. Gordienko, Deep
learning for fatigue estimation on the basis of multimodal human-machine interactions, arXiv.org,
arXiv: 1801.06048, 2017.

[2] E. Frank and M. A. Hall, Data Mining: Practical Machine Learning Tools and Techniques, Morgan
Kaufmann, 2011.

[3] S. Sonnenburg, M. L. Braun, C. S. Ong, S. Bengio, L. Bottou, G. Holmes, Y. LeCun, K.-R. Müller,
F. Pereira and C. E. Rasmussen, The need for open source software in machine learning, Journal of
Machine Learning Research, vol.8, no.10, pp.2443-2466, 2007.

[4] D. A. Tamburri and R. Kazman, General methods for software architecture recovery: A potential
approach and its evaluation, Empirical Software Engineering, vol.23, no.3, pp.1457-1489, 2018.

[5] M. Akour, H. Al Sghaier and O. Al Qasem, The effectiveness of using deep learning algorithms
in predicting students achievements, Indonesian Journal of Electrical Engineering and Computer
Science, vol.19, no.1, pp.387-393, 2020.

[6] M. Akour and M. Alenezi, Test suites effectiveness evolution in open source systems: Empirical
study, Indonesian Journal of Electrical Engineering and Computer Science, vol.19, no.2, pp.1085-
1092, 2020.

[7] O. Al Qasem, M. Akour and M. Alenezi, The influence of deep learning algorithms factors in software
fault prediction, IEEE Access, vol.8, pp.63945-63960, 2020.

[8] H. Alsghaier and M. Akour, Software fault prediction using particle swarm algorithm with genetic
algorithm and support vector machine classifier, Software: Practice and Experience, vol.50, no.4,
pp.407-427, 2020.

[9] O. Al Qasem and M. Akour, Software fault prediction using deep learning algorithms, International
Journal of Open Source Software and Processes (IJOSSP), vol.10, no.4, 2019.

[10] M. Akour, O. Al Qasem, H. Alsghaier and K. Al-Radaideh, The effectiveness of using deep learning
algorithms in predicting daily activities, International Journal of Advanced Trends in Computer
Science and Engineering, vol.8, no.5, pp.2231-2235, 2019.

[11] M. Alenezi and I. Abunadi, Quality of open source systems from product metrics perspective, Inter-
national Journal of Computer Science Issues (IJCSI), vol.12, no.5, p.143, 2015.



1026 M. ALENEZI AND M. AKOUR

[12] F. A. Fontana, V. Lenarduzzi, R. Roveda and D. Taibi, Are architectural smells independent from
code smells? An empirical study, Journal of Systems and Software, vol.154, pp.139-156, 2019.

[13] I. T. Bowman, R. C. Holt and N. V. Brewster, Linux as a case study: Its extracted software
architecture, Proc. of the 1999 International Conference on Software Engineering, pp.555-563, 1999.

[14] B. Grone, A. Knöpfel and R. Kugel, Architecture recovery of Apache 1.3 – A case study, International
Conference on Software Engineering Research and Practice, 2002.

[15] A. E. Hassan and R. C. Holt, Architecture recovery of web applications, Proc. of the 24th Interna-
tional Conference on Software Engineering, pp.349-359, 2002.

[16] I. Ivkovic and M. W. Godfrey, Architecture recovery of dynamically linked applications: A case
study, Proc. of the 10th International Workshop on Program Comprehension, pp.178-184, 2002.

[17] W. Eixelsberger, M. Kalan, M. Ogris, H. Beckman, B. Bellay and H. Gall, Recovery of architectural
structure: A case study, International Workshop on Architectural Reasoning for Embedded Systems,
pp.89-96, 1998.

[18] W. Eixelsberger, Recovery of a reference architecture: A case study, Proc. of the 3rd International
Workshop on Software Architecture, pp.33-36, 1998.

[19] G. Granchelli, M. Cardarelli, P. Di Francesco, I. Malavolta, L. Iovino and A. Di Salle, Towards
recovering the software architecture of microservice-based systems, IEEE International Conference
on Software Architecture Workshops (ICSAW), pp.46-53, 2017.

[20] X. Zhang, M. Persson, M. Nyberg, B. Mokhtari, A. Einarson, H. Linder, J. Westman, D. Chen
and M. Törngren, Experience on applying software architecture recovery to automotive embedded
systems, Software Evolution Week – IEEE Conference on Software Maintenance, Reengineering, and
Reverse Engineering (CSMR-WCRE), pp.379-382, 2014.

[21] J. Garcia, I. Ivkovic and N. Medvidovic, A comparative analysis of software architecture recovery
techniques, The 28th IEEE/ACM International Conference on Automated Software Engineering
(ASE), pp.486-496, 2013.

[22] V. Tzerpos and R. C. Holt, ACCD: An algorithm for comprehension-driven clustering, Proc. of the
7th Working Conference on Reverse Engineering, pp.258-267, 2000.

[23] J. Garcia, D. Popescu, C. Mattmann, N. Medvidovic and Y. Cai, Enhancing architectural recovery
using concerns, The 26th IEEE/ACM International Conference on Automated Software Engineering
(ASE2011), pp.552-555, 2011.

[24] B. S. Mitchell and S. Mancoridis, On the automatic modularization of software systems using the
Bunch tool, IEEE Trans. Software Engineering, vol.32, no.3, pp.193-208, 2006.

[25] P. Andritsos and V. Tzerpos, Information-theoretic software clustering, IEEE Trans. Software En-
gineering, vol.31, no.2, pp.150-165, 2005.

[26] O. Maqbool and H. Babri, Hierarchical clustering for software architecture recovery, IEEE Trans.
Software Engineering, vol.33, no.11, pp.759-780, 2007.

[27] K. Sartipi, K. Kontogiannis and F. Mavaddat, A pattern matching framework for software architec-
ture recovery and restructuring, Proc. of the 8th International Workshop on Program Comprehension
(IWPC2000), pp.37-47, 2000.

[28] S. Kalyanasundaram, K. Ponnambalam, A. Singh, B. J. Stacey and R. Munikoti, Metrics for software
architecture: A case study in the telecommunication domain, Proc. of IEEE Canadian Conference
on Electrical and Computer Engineering, vol.2, pp.715-718, 1998.

[29] M. Alenezi, Software architecture quality measurement stability and understandability, International
Journal of Advanced Computer Science and Applications (IJACSA), vol.7, no.7, pp.550-559, 2016.

[30] M. Staron and W. Meding, A portfolio of internal quality metrics for software architects, Interna-
tional Conference on Software Quality, pp.57-69, 2017.

[31] A. Abu Hassan and M. Alshayeb, A metrics suite for UML model stability, Software & Systems
Modeling, vol.18, no.1, pp.557-583, 2019.

[32] T. Al Hamed and M. Alenezi, Business continuity management & disaster recovery capabilities in
Saudi Arabia ICT businesses, International Journal of Hybrid Information Technology, vol.9, no.11,
pp.99-126, 2016.

[33] M. Alenezi and M. Zarour, Modularity measurement and evolution in object-oriented open-source
projects, Proc. of the International Conference on Engineering & MIS, pp.1-7, 2015.

[34] D. Singh, An optimizating the software metrics for UML structural and behaviourl diagrams using
metrics tool, INFOCOMP Journal of Computer Science, vol.18, no.1, pp.9-19, 2019.


