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Abstract. Community detection in complex networks has recently become considerable
because it is possible to explore community structure, analyze behaviour and action. De-
tecting these communities brings enormous finance and provides informational value in
the complex network. Many algorithms are proposed in previous studies for community
structure detection problem. However, the majority of studies on community detection
often have an element of randomization in their performance that leads to inconsistent
results. In this paper, we proposed an efficient hybrid Algorithm for Community structure
Detection in complex networks based on individual Node Influence (named CDANI) to
detect community with stable results, and also detect overlapping nodes. Through simu-
lations on synthetic network adapter and real-world datasets, the results show that our
algorithm is innovated comparing to other community detection algorithms.
Keywords: Community detection, Complex networks, Node influence, Overlapping
nodes

1. Introduction. Complex networks have always been a classic topic for scientific works.
Intensive researches about complex networks promote scientific development in many
different fields through the different structures such as social networks, biological networks
and cell networks. The most important issue as conducting a study on complex networks
is to discover community structure. It helps to develop science in general and viral
marketing in particular with finding communities of similar relationships such as interests,
tendency, and personal habits. According to Fortunato [6], the community is a group of
collected individuals on the Internet, and they were treated as a member of a group
rather than as an individual. The entity has some similar properties and plays a role
in a social network. Due to the complex structure and enormous scale of communities,
understanding internal structure is a major challenge. A method to cope with analysing
community structure problem is known as community detection. It reported internal
organization and identified special existence among nodes that were not directly accessible
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or identifiable from the direct test following available experiences. The goal of the problem
is to detect the community structures from given social networks and learns about the
community relationships between communities and members, how those relationships
affect the structure of the complex network. Following reasons mentioned, community
detecting in complex networks does become a significant issue in the science of networks.
Nodes in the same community must have some of the same characteristics and attributes.
To define community structure, we must analyze relationships in terms of geometri-

cal structures among communities. Community structure was studied by Girvan and
Newman in 2002 with the idea of using centrality indices to find community boundaries
[7]. It is one of the earliest community detection algorithms, based on the idea that a
network can be divided into communities by repeatedly removing edges between commu-
nities. Consequently, each edge in the network is valued with a metric called weight. The
Newman-Girvan modularity, is a well-known measure of how well a community structure
is, given in 2004 [17]. Unfortunately, Brandes et al. [14] proved that modularity opti-
mization is NP-hard and so approximation algorithms are necessary when handling large
networks. In addition, this topic is explored with modularity method such as [1, 11],
which is based on modularity optimization using heuristic, is fast and scalable. However,
modularity optimization methods may meet some problems like communities smaller than
a predefined size may not be detected. The label propagation algorithm (LPA), which is
first presented in Raghavan et al. [19], is considered to be one of the fastest algorithms in
community detection with simple design and its timing complexity is almost linear. It can
be generalized as follows: Each node was marked a unique label; through each iteration
process, the nodes update its label to the label it most often encounters in random order
from neighboring nodes. It means when there are the several of frequent labels, the node
will randomly pick up to become its own label. It continues until each node’s label is the
most frequent of its neighbors. A node updates its label based on its neighbor’s last iter-
ation label and the labels from the other neighbors’ current iteration. This process ends
when the algorithm satisfies the stop condition. In the final step, community is defined
as a group of nodes having same labels. Innovative studies have polished up LPA in vari-
ous aspects, for example, as finding overlapping community [9]. Nevertheless, due to the
randomness in choosing the order of neighboring nodes to update and randomly choosing
nodes’s label, the algorithm’s stability was not guaranteed. This means that LPA could
detect different communities in different runs. Sometimes, even small communities can
be swallowed by large communities and being formatted as monster community. CDANI
resolves this instability-problem by relegating random elements.
A summary of the previous studies is that they are not able to guarantee the stability

among the final results. And in the most of the previous studies, the essence of those
algorithms is greedy, clustering each node one by one and re-evaluating the graph after
just only node merging such as [2, 4, 7, 12, 18]. To solve these problems, we introduce
our algorithm in subject community detection based on node influence called CDANI for
complex networks, which can not only detect communities in graphs, but also determine
overlapping nodes. Firstly, network’s topology information is used to measure the node
intimacy. The node importance is evaluated based on the intimacy matrix to improve
the stability and accuracy of the community detection by preventing as many as possible
random selection processes. Sets of selected nodes will have descending by order of priority,
according to the individual importance based on node influence. Secondly, we iteratively
select the affected nodes again by the representative node sets to merge them into same
communities. Finally, this process finishes when the influential value is greater than the
allowed threshold to be merged. This threshold is predefined and scalable according to
the size of networks.
The rest of this paper is organized as follows. We propose our algorithm along with

its background, theoretical analysis and proofs in Section 2. In Section 3, we present the
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experimental evaluation and compared results with other previous detecting algorithms.
Finally, Section 4 concludes the paper.

2. Community Detection Algorithm.

2.1. Background and notion. Let G(V,E) be a network that consists of set of nodes
V and E which is set of edges that show connections between nodes. We define graphs
G ′(V ′, E ′) with extended set node V ′ inherited by G(V ) and set edges E ′ inherited by
G(E). Each v in V ′ includes extended attributes as child node set or the number of internal
links. Edge e ∈ E ′ is defined as a directed and weighted edge with weight computed by
(5).

2.1.1. Node intimacy. Based on the community concept, two nodes in the network are
intimate if they have a number of common neighbor nodes. Several node similarity mea-
surements based on local topology information illustrated different efficiency for commu-
nity structure detection in complex networks described in Zhou et al. [21]. Similarity
measurements are used to evaluate the intimacy between each pair of nodes in the graph.

Jaccard Index (JI) [10] is a widely applied method basing on local topology information
to detect community structures in complex networks. JI was defined by the following
formula:

S(u,v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)|

, ∈ [0; 1], (1)

where N(u) represents neighbors of nodes u and N(v) represents neighbors of node v.
|N(u)∩N(v)| shows the number of common neighbor nodes and N(u)∪N(v) is the quan-
tity of both u and v. However, while evaluating node intimacy, JI has some limitations.
JI underestimates the level of intimacy between connected nodes; it even returns zero if
two nodes do not have mutual friends, which is nonsense.

To surmount the shortcomings of JI’s local bridge problem, Eustace et al. [5] have
introduced a more efficient function as follows:

Iu→v =
|(N(u) ∩N(v)) ∪ {v} ∪ {u}|

|N(u) ∪ {u}|
(2)

When nodes u and v are connected by direct edge, the value of Iu→v is always greater than
0. The larger this value, the closer u is to v. Eustace has improved JI’s zero-intimacy
problem when estimating by the mutual neighbor nodes including u and v themselves.
However, this algorithm only evaluates the intimacy value when there is a direct edge
between two nodes, not to mention the influence of indirect edges.

Inheriting previous principles, we have overcome the disadvantages when evaluating
the intimacy between two nodes or two supernodes in general. We improved the intimacy
node formula above to the intimacy for groups of nodes (communities), in order to increase
the accuracy when evaluating the intimacy on the relationship between the group nodes.

2.1.2. Mergeability.

Definition 2.1 (Mergeability). To evaluate whether or not a community is willing to
be merged, we use mergeability. The higher the mergeability value of one community is,
the more reasonable it is to merge that community into another; on the other hand, the
lower the merge value is, the less community needs to expand. We proposed a formula as
follows:

Mu =

√(
n′

n+n′

)2
+
(

m′

m+m′

)2
density(u)

(3)
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n, n′ are considered as the number of child nodes and neighbor nodes; m, m′ are the
number of internal and external links of community Ci. The concept of density of a graph
or a community is defined as a ratio between the existing edges within the graph to the
maximum number of possible edges between the nodes. In our article, “density” is used
as the worth-merging of an community and calculated using the following formula:

density(u) =


m

n ∗ (n− 1)
, (n > 1)

1, (n ≤ 1); density(u) ∈ (0; 1]
(4)

where n is the number of child nodes in community and makes n(n − 1) become the
maximum number of possible edges in the community, and m indicates internal edges of
community. When the number of child nodes ≤ 1, then density(u) = 1, if there is no
internal link causes density = 0. This leads to dividing by zero error for mergeability
formula; hence, the default value is 1. Range of M values is

[
0;
√
2
]
and Mu = 0 when u

is in a state without edges to any other node.

2.1.3. Influence weight. When a user v is followed by user u, we consider object u to be
in the community v. This process continues with the other nodes, so the nodes with the
same target are regarded as a community. Community of u following v is detected when
v becomes the source of maximum influence on u. Influence weight is defined as follows:

Fu→v = Iu→v ∗
#edge

#outlinku
∗Mv (5)

2.1.4. Individual importance. We measure individual importance corresponding to node
weight. The purpose of selecting these important nodes is to determine the priority
to merge that node in the graph, in order to regenerate a graph with a less complicated
structure, thence improving the accuracy in community detecting. Our value is computed
as follows: ⨿u =

∑
v∈S,v ̸=u Fu→v.

2.1.5. Overlapping. In addition to the main detecting algorithm based on community
structure, we proposed searching community overlapping theory in graph. In the classic
detecting algorithm, each node is labeled to identify its own community. In reality, there
are many circumstances where a node intrinsically belongs to many different communities.

Definition 2.2 (Overlapping). It is a detection method where a node could belong to
more than one community. In community detecting problem, grouping overlapping entirely
changes the structure of whole graph, which affects results in following steps.

Currently, problems of finding and solving overlapping nodes are solved by skipping
detecting overlapping; marking overlapping node and randomly assigning it to a group
which it possibly belongs to or separating them for all the communities which meet con-
ditions to contain overlapping nodes [8]. Following the overlapping detecting theory, we
suggest the algorithm works as follows: when finding a pair of nodes with the best clus-
tering priority value, source node will be grouped with target group node. By searching
the out link of the source node having the highest influence weight value and reaching the
threshold, we determine whether the source node can still be in any other group target
node. When finding any satisfied groups, we immediately allocate source node to it.
We assume when a node u is merged into group v, then all edges between u and v will

be synchronized as internal link and all edges between u to other nodes will be pointed
to v as a representation. When allocating overlapping u to k node sets, we suppose u
is split into k same subnodes u and put into k communities. The edge set of graph will
increase k times the number of external links of node u, due to the number of cross edges
between the k sets assuming node u is in this community. We solve the problem when
communities with the same overlapping are grouped together and eliminate the virtual
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edges stemming from node overlapping caused by splitting. The purpose of this process
is to return the intact data as the original graph with the number of nodes and edges
unchanged.

2.1.6. Community merging threshold.

Definition 2.3 (Merging Threshold). It is a given threshold to stop merging two clus-
ters together, when the influence weight of a cluster to another cluster is higher than the
threshold score expected, which means that when two clusters affect each other well, but
together will reduce the quality of the cluster. In fact, in addition to the clustering condi-
tion of the existing algorithms, a different measure is necessary, which avoids community
merging causing lower the quality of the clusters. We predefined it as the stop-condition
threshold of our algorithm.

We experimented several times on large and small datasets until a relatively suitable
value was found to make the quality of detected community at the consequent range.
After testing, we have found the formula to determine the most standard threshold value,
which is presented as follows:

θu→v =
Mu

Mv

∗
logn(|C|) ∗ ln(n)

n

logn(|{u} ∪ {v}|)
∗



1

logn2

(
ln(|{u}|∗|{v}|)

ln(n2)

) , |{u}| ∗ |{v}| ≥ n

1

logn2

(
ln(n2)

ln(|{u}|∗|{v}|)

) , 1 < |{u}| ∗ |{v}| < n

(6)

2.2. Proposed algorithm. Community detection algorithms are divided into two types:
disjoint community detection and overlapping community detection. CDANI algorithm
in our study is proposed to detect overlapping communities in complex networks. Given
graphs G(V,E) including node set V and edge set E, our algorithm has an diagram shown
in Figure 1. Based on deterministic graph G, we select independently each edge (u, v) ∈ E
with its own weight w(u, v) to make sample graph G = (V ′, E ′).

2.3. Complexity analysis. Complexity of an algorithm is to evaluate step of effective-
ness based on running time, memory usage or costs. Let network graph G(V,E) have total
n nodes and m edges. The time to parse G(V,E) into G = (V ′, E ′) is O(n)(’). Assuming
x is the number of structured detecting loops, and kx is the number of merged groups
in certain loop, we have that n′ = n − kx is the number of current groups, with kx < n
(*). Time complexity to calculate influence weight by browsing all pairs of source-target
nodes having direct edges with n′ ∗(n′−1) edges is O(n′) = O(n′)∗O(n′−1) = O (n′2)(”).
Expected running time to estimate ⨿u for all vertices is O(n′)(”’). Time complexity of
finding pair of source-target nodes is O(n′) + O(n′) = O(n′). The complexity cost of
finding target node with the highest ⨿u value is O(n′) and the cost for finding the source
node of that target node by browsing the entry p of the target node is O(p). Additionally,
complexity of searching for more target’s community is by traversing out neighbor node
O(p′) (with p, p′ < n′). Hence, we have time complexity of finding pair of source-target
nodes is O(n′) ∗O(p) ∗O(p′) = O(n′ ∗ p ∗ p′) = O (max(n′, p, p′)3) = O (n′3).

Nevertheless, O (n′3) is extremely high so we applied a binary heap searching solution
running in time O(log2 x), then time to build the heap structure is O(x ∗ log2 x).

Proof: We have constraint n′ > 1, then log2 n
′ >= n.

Time complexity to build heap for every node is n′ ∗ O(n′ log2 n
′) = O (n′2 ∗ log2 n′).

Therefore, finding the target node having highest ⨿u runs in time O(log2 n
′). Similarly,

the cost of finding source node is O(log2 p) and finding target clusters of source node
is O(log2 p

′), and thus, expected time to find pair of node merging: O (n′2 ∗ log2 n′) <
O (n′3). �
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Figure 1. Diagram of CDANI
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In the worst case, time of merging the source node into h groups while distribution
overlapping is O(h) with (h < n) and the time to synchronize edges for p neighbors of h
new communities is h ∗O(p) = O(h ∗ p) with (p < n′). Hence, total merging time is

O(h) +O(h ∗ p) = O(max(h, h ∗ p)) = O(h ∗ p) = O(n′2) (7)

After above analysis steps, we evaluate the complexity for single iteration of CDANI
through proof in (”), (”’), Proof, (7) as follows:

O
(
n′2)+O(n′) +O

(
n′2 ∗ log2 n′)+O

(
n′2) = O

(
n′2 ∗ log2 n′) (8)

Additionally, execution time complexity of every x searching iterations in (*) is∑
O
(
n′2 ∗ log2 n′) = ∑

O
(
(n− kx)

2 ∗ log2(n− kx)
)
= O

(
n2 log2 n

)
From (’) and (8), we have O(n) +O (n2 log2 n) = O (max (n, n2 log2 n)) = O (n2 log2 n).

In summary, we compute the complexity of CDANI as a cost of O (n2 log2 n) for over-
lapping graph structure detecting. In terms of offering innovative solutions to improve
our speed, we apply k-heap data structures to increasing detecting speed for large-scale
data.

3. Experiment. Through our experimental results of detecting community on real-world
datasets, we compared our results with many other algorithms and then came to a con-
clusion about the optimization of CDANI. Our experiments are executed on a Linux
machine with a 2 × Intel(R) Xeon(R) CPU E5-2630 v4 @ 2.20GHz, 64GB RAM DDR4
@ 2400MHz. Our implementation is written in Python language.

3.1. Datasets. We choose a set of datasets including Karate, Dolphins, Football, Po-
litical Books and Net-science to propose the experiment. Details of used datasets are
described in Table 1. Graphs in Experiment section interpret community structure in the
following format: each community has a distinctly particular color, separates from others.
Overlapping nodes are highlighted in white, positioned in the middle of its communities.

Table 1. Datasets

Dataset #Nodes #Edges Type
Karate [20] 34 78 Directed and Unweighted
Dolphins [15] 62 159 Directed and Unweighted
Football [7] 115 613 Directed and Unweighted

Political Books 105 411 Directed and Unweighted
Net-science [16] 1589 2742 Directed and Unweighted

The Zachary’s Karate Club is a classical network in community detection. In our
algorithm, it was detected with 4 communities. As shown in Figure 2, node 10 is the
overlapping of the community colored in the community “34” and “3”.

The Football Network [7] simulates the schedule of games between United States college
football teams. In this dataset, each edge represents regular season matches between two
connected teams. Our algorithm detected 9 communities within this network.

Lusseau et al. [15] conducted a study of connection between 62 dolphins living in the
Doubt Sound Strait of New Zealand. In Figure 3, the network is divided into 10 groups
in a real community structure and 9 overlapping nodes are detected.

PolBooks1 is a network of American politics books published around the time of the
2004 presidential election and sold by Amazon.com. Nodes present books and edges
between books represent the frequent purchase of the same book by the same buyer.

Net-science [16] is a dataset describing the collaborative network of 1589 scientists
(network scientists) working on network theory and experiment from many different fields.

1http://www-personal.umich.edu/ mejn/netdata/.
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Figure 2. Detecting community with CDANI in Zachary’s Karate Club

Figure 3. Detecting community with CDANI for Dolphins Network

3.2. Evaluation. We use Modularity [17], F1-score [13] and NMI [3] to compare detect-
ed communities. Modularity is a classical measure to evaluate the quality of network’s
partition. Dividing a network into k community, element eij shows edges which connect
one node in community Ci to another in Cj. Modularity Q is defined as follows:

Q =
1

2m

∑
uv

[
Auv −

kvkw
2m

]
susv + 1

2
, while eij =

∑
uv

Auv

2m
(9)

Modularity’s returned value is limited by [0; 1]. The higher value Q, the better perfor-
mance and quality of the community structure detected by that algorithm is. Commonly,
it is in the range of [0.3 : 0.7]. NMI (Normalized Mutual Information) [3] is proposed to
calculate the similarity between the ground-truth community structure and the commu-
nity structure found by our algorithm.

NMI (A,B) =
−2

∑CA

i=1

∑CB

j=1Cij log
(

Cijn

Ci.C.j

)
∑CA

i=1Ci. log
(
Ci.

n

)
+
∑CB

j=1C.j log
(

C.j

n

) (10)

Given a discrete community set C generated by algorithm and groundtruth community

set S, precision = |C∩S|
C

and recall = |C∩S|
S

, F1-score [13] is defined as follows:

F1-score =
2× precision× recall

precision+ recall
(11)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.12, NO.10, 2021 907

3.3. Result. After the experiment and obtained results on above networks, we give some
general comments about the experimental results and the algorithm we suggest. We
apply algorithms above to calculating the quality of our algorithm with the results of
two previous detecting algorithms to compare GN [17] and LPA [19]. Particularly, the
Net-science dataset has a runtime exceeding acceptable threshold so we set it aside. Our
experiment results are described in Table 2, and best value for each test formula is bolded.

Table 2. The results comparison of GN, LPA and CDANI

Dataset
GN LPA CDANI

Q NMI F1-score #Com Q NMI F1-score #Com Q NMI F1-score #Com

Karate [20] 0.401 0.579 0.042 5 0.345 0.657 0.692 1 0.426 0.679 0.511 4

Dolphins [15] 0.495 0.554 0.204 8 0.498 0.595 0.312 10 0.504 0.621 0.469 5

Football [7] 0.595 0.879 0.204 8 0.583 0.872 0.312 10 0.562 0.809 0.389 9

Political Books 0.517 0.558 0.074 5 0.481 0.423 0.087 4 0.528 0.394 0.294 10

Net-science [16] #n/a #n/a #n/a 480 0.891 #n/a #n/a 455 0.714 #n/a #n/a 708

Based on Table 2, most computed Modularity values are approximate or higher than
other comparising methods in spite of the different quantity and structure of detected
communities. Results show that each community detected by CDANI has high quality.
As we can see in Figure 4, Modularity value of CDANI is even better compared to the
datasets’s ground truth, only Modularity value of Football Network is lower than ground
truth. The number of conmmunities between ground truth and CDANI’s networks has
been increasing the differences according to the network size. Our results in NMI and
F1-score values are sometimes lower than other comparing methods.

Figure 4. Q of CDANI and ground truth

4. Conclusion. In this paper, we studied the problem of community discovery in the
subject of complex network analysis. We proposed an improved algorithm based on
node intimacy. At first, we calculated the node’s individual importance by inherited
formula and arranged them in descending order of priority. Next, the nodes are conducted
merging based on the most important nodes to their neighbors. Our algorithm is also
capable of finding overlapping communities and improving stability. Finally, we compare
the performance of the algorithm proposed in the paper with the previous represented
methods with real-world networks, and give the expected test results. The quality of the
discovered community structure is better than the compared algorithms.

In the future, we research on parallelizing our algorithm to amend the results when
running large-scale datasets.
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