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ABSTRACT. Density-based clustering has advantages over partition-based clustering, such
as K-means, in that it does not need to specify the number of clusters (k) and can generate
clusters of arbitrary shape. However, density-based clustering requires hyper-parameters
such as proximity distance and the minimum number of proximity data that are suitable
for data characteristics, and this greatly influences the clustering performance. In this
paper, we present a density-based clustering algorithm for stream data, which exploits
coresets in the sliding window model. We provide an experimental analysis of these
hyper-parameters on the performance of the algorithm.
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1. Introduction. As a huge amount of data are generated and many industry sectors
increasingly use and apply them in real time, clustering of stream data is becoming more
critical. Processing stream data is essential in the area of generating and processing big
data in real time, such as in the fields of transportation vehicles, and industrial equipment,
where new dynamic data are continuously generated [1]. For example, self-driving vehicles
determine their inside and outside situations in real time through various sensors, such
as a camera, GPS, and radar [2]. Data stream clustering is an essential step in making a
data summary for such large-scale real-time data analysis. However, various algorithms
have been suggested, because it is difficult to apply a very complex clustering algorithm
directly to a large number of data.

Previous studies have proposed various data stream clustering methods for real-time
data processing [3,4]. Most studies have proposed methods based on partition-based clus-
tering. Partition-based clustering, such as K-means [5] and K-medoids [6], has advantages
in that it is straightforward to apply it to large-scale data, because the algorithm is sim-
ple. It is also relatively easy to interpret the cluster results because it generates only k
clusters. However, applying these traditional partition-based clustering methods to data
streams has the following disadvantages. 1) Performance deteriorates when choosing an
inappropriate k value. 2) Because it is based on the Euclidean distance, noncircular clus-
ters cannot be generated. 3) There is a large variation in performance depending on the
distance measure for high-dimensional data.

Density-based data clustering [7,8] finds clusters with geometric shapes by connecting
clusters according to density. It has the advantages of not having to specify the number
of clusters and being able to reduce the decrease in the clustering performance. Most
algorithms in density-based clustering use a damped window model [17,18]. In a damped
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window model, the data received once are not removed from the window afterwards; there
is inefficiency in that the whole data must be accessed even though the influence of the
obsolete data is reduced. Only a few such as [11,19] employ a sliding-window model but
yet utilize partition-based clustering algorithms®.

In this work, we propose an efficient density-based data stream clustering algorithm
that utilizes a sliding window. The algorithm applies a well-known density-based spa-
tial clustering of applications with noise (DBSCAN) [8] to data streams and additionally
combines locality-sensitive hashing (LSH) [9,11]. We also present the importance of ap-
propriate parameter setting according to the dataset, because the parameter configuration
of the density-based clustering method influences the performance of the algorithm.

The structure of this work is as follows. Section 2 presents the related work. Section 3
presents the proposed algorithm. Section 4 reports experiments conducted to find optimal
parameters, and the clustering performances are analyzed by comparing the proposed
method with traditional methods. Section 5 concludes and provides the future work.

2. Problem Statement and Preliminaries.

2.1. Partition-based clustering vs. density-based clustering. The K-means clus-
tering [5] generally divides data into k groups by calculating their proximity to each other
according to the Euclidean distance. The k groups have their own center points, and
each of the data belongs to the cluster of the closest center point among various cen-
ter points. Despite its simplicity, there is an issue that k£ value should be required as a
hyper-parameter, and it affects the clustering performance greatly. Moreover, the initial
start cluster is randomly determined, so it may not always provide reliable clustering. A
clustering algorithm presented in our previous work [11] is also based on K-means and is
shown in Figure 1(c). To compensate for the weakness of K-means, K-medoids [12] uses
the medoid that is the object at the very center of a cluster. After specifying k& medoids,
a cluster is built by calculating similarities. It may be stronger in noises and outliers, but
it has high computational cost.

Unlike partition-based clustering, density-based clustering is divided into a cluster as
a high-density region and a noise as a low-density region, and clusters of arbitrary shape
can be found. It uses eps (radius or epsilon), which is the distance from the center
point of a cluster, and minPts, which is the minimum number of points within the radius
that can form the cluster. DBSCAN [8], the most commonly used method of density-
based clustering, has the advantage of not specifying the number of clusters, unlike K-
means. However, it has the disadvantage of specifying eps and minPts in advance, and
its performance varies greatly depending on these two parameters.

2.2. CSCS: Coreset-based clustering with sliding windows. The sliding window
[10] means continuously processing data of a limited size to handle large data streams.
It removes the data expired over time and adds new tuples to the window. Clustering
on it targets these data, and updating it should also update the clustering results. This
characteristic enables the sliding window in data stream clustering to reflect the recent
elements of the streams [12]. Generally, the size of the sliding window is referred to as a
“range”, and the update unit of the window is referred to as a “slide”. Figure 1(a) shows
the process of sliding window.

The coreset-based clustering with sliding windows (CSCS) [11], a two-level clustering
method for stream data, generates coresets to group using LSH in the sliding window in
Level 1 and generates clusters in Level 2 by applying K-means with coresets generated
in Level 1. To reduce the number of generated buckets, it iterates the process until
the specified number of clusters is reached. In addition, if updating with new data is

'Readers who are interested in different window models on stream data clustering may refer to [14].
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FI1GURE 1. Two-step clustering with sliding window

needed, it determines whether to add to existing clusters or to generate new clusters
using Kullback-Leibler divergence [13]. This algorithm is illustrated in Figure 1.

3. Proposed Algorithm. The proposed algorithm is density-based clustering using
coresets and is based on the DBSCAN [8] algorithm for the sliding window. It is also
based on the two-level coreset method of CSCS [11], which generates coresets based on
LSH prior to clustering, as seen in Figure 1(b). LSH (locality sensitive hashing) can hash
similar input values into the same buckets by probability. Adjacent buckets in the hash
table may be merged to reduce the size of the hash table. Level 2 performs a density-
based clustering with coresets generated in Level 1. It determines neighbors and corrects
clusters by comparing the distance between the center point of each coreset with the eps
value. The proposed algorithm modifies the original DBSCAN in terms of process of
finding neighbors.

Algorithm 1 is a pseudocode that shows this process. Unlike DBSCAN, we define GF, if
it exists or overlaps within the epsilon-weighted distance, as a neighbor. Algorithm 1 finds
all neighbors within the epsilon distance for the coreset point cp. If neighbors are greater
than the number of minPts, a new cluster is created and assigned for c¢p. The cluster
is expanded by iterating this process, which is Algorithm 2. If all cps are visited while
expanding clusters, the algorithm completes. The algorithm works in place of K-means
in the process from (b) to (c¢) in Figure 1. We call this proposed algorithm “Den-CS”.

Algorithm 1. Den-CS
Input: coreset cp, €, m
Output: cluster C'
1:  function Den-CS (coreset point cp, eps &, minPts m)
for each c¢p € CP do
if ¢p not visited then
neighbor N<-GF's with distance € from ¢p U overlapped GF's of ¢p
if N >=m then
create new cluster ¢
expandCluster(cp, N, ¢, €, m)
end if
end if
10: end for
11: return C
12: end function

4. Experiment.

4.1. Environment. Experiments were conducted on Ubuntu 18.04.2 LTS with Intel Core
i7-4790 CPU 16.00-GB RAM based on java version “1.8.0_.191”.
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Algorithm 2. ExpandCluster

1: function expandCluster(cp, N, ¢, €, m)

2 for each ¢ € N do

3 if ¢ not visited then

4: mark ¢ as visited

5% neighbor N2<-GF's within distance from ¢p U overlapped GFs of c¢p
6.

7

8

9

if N2 >=m then
add g as N
end if
if ¢ not assigned to existing clusters
then
10: add ¢ as cluster c
11: end if
12: end if
13: end for
14: end function

The three datasets used in the experiments are covtype, knews, and knewsft. Covtype?
contains tree observation data as cartographic variables in four areas in the Roosevelt
National Forest of Colorado. This dataset has seven categories of 54 dimensions with a
size of 72 MB. The knews dataset has 17 categories consisting of a set of news documents
in Korean. A knewsft dataset was built by using the FastText library and converting this
dataset [14].

We evaluated the efficiency of the clustering algorithm by measuring both the total
processing time and the quality of the clusters. Note that depending on the characteristic
of dataset or the application domain of clustering algorithm, there may be different mea-
sures applied to evaluating the clustering quality. Among various measures, we use purity
in that all three datasets contain documents that are classified into categories [14,15]. It
is also used as a density-based clustering quality measure in other works such as [19]. In
our experiment, we calculate purity(C,G) by % Zle max; |¢;, gj|, where C' and G are a
set of clusters ¢;, and a set of categories g;, respectively.

4.2. Experimental analysis. The experiments were conducted by changing the number
of minPts or the eps value for three datasets to find their optimal parameters. In order to
choose proper candidate parameter values for their optimal ones, we followed a heuristic
method proposed in [16]. The method can be summarized as follows. First, the parameters
proposed in [11] were set as the initial seeds to search for candidate parameters; minPts
was set to 3 and eps to 380, 0.0189, and 0.205 for the covtype, knews, and knewsft,
respectively. Experiments were conducted to measure the execution time of the DBSCAN
algorithm while changing the numbers to an arbitrary range of numbers to find optimal
values. The experiments were performed on each dataset while changing eps to 2, 5,
10, 0.5, 0.1, 0.05, and 0.01 times the reference value and minPts to 3, 5, 10, and 20.
We set candidate parameters to make the algorithm run in less processing time than the
average processing time of DBSCAN. Then, we make pairs of (minPts, eps) with candidate
parameters. After making pairs of them, we conduct the experiment with DBSCAN and
Den-CS algorithms to calculate the purity for each candidate parameter pair. From these
results of the experiment, the optimal parameters are selected as a pair with the highest
purity and the shortest processing time for each dataset. Finally, applying those optimal
parameters to both DBSCAN and Den-CS algorithms, we compare the processing time
and show the difference of performance of both algorithms.

2https://archive.ics.uci.edu/ml/datasets/covertype
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Figure 2 shows the measurement results of the execution time of the DBSCAN algorithm
for each dataset while fixing minPts to 3 and changing eps. In the meanwhile, Figure
3 shows the measurement results of the execution time of the DBSCAN algorithm for
each dataset while fixing eps to the reference value for each dataset and changing minPts.
Figures 2 and 3 also show the average execution time of the DBCSAN for each dataset
in case of the sliding range of 5K, the largest range in our experiment. As summarized
earlier, the parameters of data that are below the average are then selected as candidate
parameters. For example, in case of the covtype dataset in Figure 2(a), 380, 190, 3.8, and
19 are selected as candidate eps values for minPts of 3. In case of the knews dataset in
Figure 3(b) where eps value is fixed, only minPts of 3 is selected in that other minPts
values do not make the algorithm run less than the average processing time.
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FIGURE 2. Processing time of DBSCAN by various eps
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FI1GURE 3. Processing time of DBSCAN by various minPts

In Figures 2 and 3, especially in Figure 3 with variable minPts, we see that the execution
time does not vary significantly when the range is small. However, as the range becomes
larger, both experiments show that the difference of the execution time becomes also
greater. It is expected that the larger the range, the greater the performance difference
when inappropriate parameter values are set. We expect more of this tendency to happen
when processing very large data sizes, such as actual data. Therefore, it is very important
to set the appropriate values of eps and minPts for each of the data to use them in
practice.

Once we derived candidate parameters for the pair of (minPts, eps), we then evaluated
the purity of DBSCAN and Den-CS for each dataset through candidate parameters. The
results of each purity evaluation are shown in Figures 4 and 5. In Figure 4, we evaluated
the purity as applying those pairs to DBSCAN algorithm for each dataset and selected
the pairs with the highest purity. For example in Figure 4(b), (3, 0.0189) was selected
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F1GURE 5. Purity of Den-CS with candidate parameter pairs
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for the knews dataset. We applied those selected pairs to Den-CS algorithm for each
dataset, and Figure 5 shows the results. As shown in Figure 5, the selected value pairs
with highest purity value make the Den-CS run well in general, although some may not
always do. We then found the optimal parameter pairs (minPts, eps) for the covtype,
knews, and knewsft datasets as (10, 190), (3, 0.0189), and (5, 0.00205), respectively. After
this, to evaluate the performance of the traditional algorithm DBSCAN, and the proposed
Den-CS algorithm, experiments were conducted to compare the execution times of these
two algorithms with optimal parameters for each dataset found in the above experiments.
Figure 6 shows the results of the experiments.

As seen in Figure 6, Den-CS achieved much better performance than DBSCAN in terms
of algorithm execution time. For example in Figure 6(c), the processing time of Den-CS is
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about one hundred times faster than DBSCAN. Through the experiments, for data that
are larger than the experimental datasets, we can see that the proposed Den-CS algorithm
with the optimal parameters proposed in this work has more advantages in terms of its
execution time.

5. Conclusions. In this work, we present a density-based clustering algorithm to resolve
the problems of partition-based algorithms that might arise in data stream clustering. The
proposed Den-CS algorithm is based on the sliding window model, and it exploits the LSH
and coresets for summarizing the stream data. The density-based algorithm requires such
parameters as the proximity distance eps and the minimum number of proximity data
minPts to make it suitable for data characteristics, and it is critical to set the appropriate
parameter values. Through the experimental evaluations, we demonstrate the importance
of setting the appropriate parameter values for the algorithm, and also that the clustering
of the proposed algorithm may outperform the state-of-the-art algorithm. However, our
experiments are limited in terms of the variety and the size of the datasets. We plan to
perform more experiments for more various types of larger stream data. In addition, we
may also need to find out better ways of building coresets in Level 1. In the future, we will
investigate which hash functions are more appropriate for stream data and density-based
clustering.
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