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Abstract. The rapid growth of perishable product supply chain requires efficient cold
chain transportation of products to the end consumers that prevents temperature variation
and quality degradation. This paper investigates effectiveness of the multi-compartment
vehicles that are capable of joint delivery of mixed temperature products in order to re-
place multiple visits by traditional single temperature reefers within last mile delivery
between hub and retailers. The proposed multi-compartment delivery problem is modeled
as a generalization of inventory routing model. Also, a robust programming model for
the multi-compartment delivery problem is developed that can protect inventory stockout
caused by demand uncertainties. Proposed models are tested on the randomly generated
instances that have comparable size to the previously reported computation of inventory
routing problems.
Keywords: Cold chain, Multi-compartment delivery problem, Robust programming

1. Introduction. As the global e-commerce becomes matured, on time delivery of perish-
able products such as fresh food, medical and pharmaceutical products to end-consumers
becomes difficult tasks for logistics industries. The perishable products can be damaged
by temperature variation and its quality degrades with time. The transportation of perish-
able products relies on cold chain technologies. Cold chain is defined as the transportation
of temperature sensitive products along a supply chain through thermal and refrigerated
packaging methods and the logistical planning to protect the integrity of the shipment
[1]. Main elements of cold chain are cooling systems, cold storage, cold transport, and
cold processing and distribution. The operations in the cold transport involve moving
goods using refrigerated trucks and railcars, refrigerated cargo ships, reefers as well as
by air cargo while maintaining required temperature and humidity conditions. Different
products require different temperature standards to maintain product integrity. Required
cold temperatures are commonly classified as banana (13◦C), chill (2◦C), frozen (−18◦C),
and deep frozen (−29◦C). The medium to maintain cold temperatures are dry ice, gel
packs, eutectic plates, liquid nitrogen, and reefers. Reefers are generic name for tempera-
ture controlled transport units including van, small truck, and forty foot ISO containers.
Moving goods across the supply chain without any temperature degradation necessitates
collaboration of logistical processes [2].

For the last mile delivery in cold supply chain, trucks and vans must meet the temper-
ature requirements of the shipments. For orders containing multiple temperature require-
ments, several visits to the same retailer with different temperature reefers can happen.
To minimize delivery cost, supplier needs to consolidate delivery visits while satisfying
time and temperature requirements of orders. One effort to reduce delivery cost is the
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development of joint delivery of multi-temperature products within single reefers. MTJD
system contains cold boxes with different levels of eutectic plates in order to provide
multi-temperature compartments in a single vehicle. Other methods to provide multi-
temperature in a single vehicle are to load several refrigerators, freezers, and isotherm
containers [3]. Dividing vehicle cargo capacities to multiple compartments is also used in
petroleum delivery trucks. For petroleum delivery, products in different compartments in
a delivery truck cannot be mixed and each product is delivered to underground tanks in
gas stations [4].
Previous researches on the cold chain delivery problems include determination of the

multi-temperature delivery vehicles fleet size and vehicle loading and departure time ad-
justment problem for multi-temperature orders. A vehicle routing problem with mod-
ified objective function that models cooling and transport cost and a location-routing
problem where the objective function includes refrigerating and carbon emission cost are
introduced [5-8]. For vaccines and general pharmaceutical perishable products, product
selection, production scheduling, vaccine allocation to developing countries, and vaccine
distribution systems are reviewed [9,10]. Mathematical model to minimize vaccine de-
livery cost, stockout and obsolete penalty cost is formulated as a stochastic possibilistic
optimization model [11].
If delivery vehicle contains one compartment, resulting problem becomes an inventory

routing problem (IRP) [12]. IRP can be regarded as a combination of vehicle routing and
inventory lot sizing problems. Branch-and-cut methods are developed where computa-
tional results for instances having up to 50 retailers and 3 to 7 time horizons are reported
[13].
In this paper, we develop a mathematical model where multi-compartment vehicles

replenish orders mixed with different temperature requirements while satisfying vehicle
capacity and retailers’ storage limit during planning horizon. Since the demands from
retailers are uncertain for different temperature products, we also develop a robust pro-
gramming model for the multi-temperature delivery problem. Previous robust formulation
of the IRP assumes just nonnegativity of inventory level, while our robust formulation
considers vehicle and storage capacities within multi-compartment vehicle environment.
This paper is organized as follows. Section 2 introduces proposed multi-compartment

delivery problem and its robust programming formulation. Section 3 discusses computa-
tional results for both deterministic and robust formulations. Finally, Section 4 summa-
rizes the result and concludes the paper.

2. The Multi-Temperature Compartment Delivery Problem. While traditional
IRP models consider single type of delivery vehicles, this study investigates the benefits of
consolidating deliveries considering time, space, and temperature dimensions. For plan-
ning periods t ∈ T , it is assumed that a single supplier would supply perishable products
to set I of retailers. Possible set R of route r with length cr is available. At the supplier’s
depot, there are two kinds of vehicles. The ordinary delivery vehicle (vehicle type Yq)
has capacity Oq with fixed temperature q and multi-compartment vehicle (vehicle type
X) has multiple compartments such that each compartment has different temperatures
with capacity Pq. We assume that type X vehicle can serve all the temperature require-
ments of retailers. Retailer i’s q-temperature product’s initial inventory level is Iiq, daily
consumption rate is uiq, maximum inventory capacity is Ciq, and unit holding cost is hiq.
Decision variable xt

r has value one if retailer i is visited using type X vehicle in period t
and has value zero otherwise. Similarly ytrq has value one if q-temperature type Y vehicle
delivers to retailer i in period t, has value zero, otherwise. Variables dtirq (ztirq) denote
the amount of delivery to retailer i using route r in period t by type X vehicle (type Y
vehicle). Notice that inventory level at retailer i in period t is Iiq +

∑
r

∑
s≤t d

s
irq − tuiq.
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Objective function of the proposed model is to minimize delivery and inventory hold-
ing cost and constraints are vehicle capacity, retailers’ storage limit and nonnegativity of
inventory levels. We assume that in each period and for each temperature q, single X
and Yq type vehicles are deployed. Based on the above discussion, we could formulate a
multi-compartment delivery problem (MCIRP) as follows.

(MCIRP) min
∑
t

∑
r

cr

(
xt
r +

∑
q

ytrq

)
+
∑
t

∑
i

∑
q

hiqIiqt (1)

s.t.
∑
i∈r

dtirq ≤ Pqx
t
r ∀t, r, q (2)∑

i∈r

ztirq ≤ Oqy
t
rq ∀r, q, t (3)

Iiqt = Iiqt−1 +
∑
i∈r

(
dtirq + ztirq

)
− uiqt ∀i, q, t (4)∑

r

xt
r ≤ 1 ∀t (5)∑

r

ytrq ≤ 1 ∀t, q (6)

dtirq + ztirq ≤ Ciq − Iiqt ∀i, r, q, t (7)

xt
r, y

t
rq binary ∀r, t, q, Iiqt, d

t
irq, z

t
irq ≥ 0 ∀i, r, q, t (8)

The objective function (1) is to minimize the sum of the transportation cost and the
customer’s inventory holding cost. Constraints (2), and (3) denote vehicle capacity limits
on route r delivery, and (4) represents inventory level of retailer i during period t for
temperature q products. Constraints (5), and (6) require that single vehicle for each type
is deployed in any period for any temperature q product. (7) corresponds to retailer’s
storage capacity limit, and (8) denotes nonnegativity and binary constraints.

This model requires the route length cr as input data for faster computation, but one
can add arc routing variables and subtour elimination constraints and solve the expanded
model using branch-and-cut algorithm [13]. Our formulation could be regarded as a
restricted master problem with pre-generated set of columns to obtain a good heuristic
solution. Because of data cr, the optimal value of the proposed model is an upper bound
for the expanded model with arc routing variables.

Next, we describe the robust programming model for MCIRP. Our presentation us-
es similar notations from Bertsimas and Thiele which describe robust formulation of
inventory lot sizing problem [14]. Among model parameters, retailer demand uiqt is
generally unknown and is estimated using historic data. Suppose that demand pa-
rameter uiqt for retailer i for product q is a random variable with distribution given
as uiqt ∈ [ūiqt − ûiqt, ūiqt + ûiqt] where ūiqt and ûiqt are average and half length parameters

of demand. Let ziqt = (uiqt − ūiqt)/ûiqt, then ziqt ∈ [−1, 1]. Assume that
∑t

k=0 ziqk ≤ Γiqt.
In the robust linear programming literature, Γiqt is called budget of robustness parameter.
The only assumption on Γiqt is that it is increasing in t. Because of space limitation, we
just state robust formulation of models (1)-(8) as the following mixed integer programming
model.

(RMCIRP) min
∑
t

∑
r

cr

(
xt
r +

∑
q

ytrq

)
+
∑
t

∑
i

∑
q

hiqwiqt (9)∑
i∈r

dtirq ≤ Pqx
t
r ∀r, q, t (10)
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i∈r

ztirq ≤ Oqy
t
rq ∀r, q, t (11)

Īiqt = Iiq0 +
t−1∑
k=0

(∑
i∈r

(
dkirq + zkirq

)
− ūiqk

)
∀i, q, t (12)

Γiqt−1qiqt−1 +
t−1∑
k=0

riqk ≤ Īiqt ∀i, q, t (13)

wiqt − Īiqt + Γiqt−1qiqt−1 +
t−1∑
k=0

riqk ≥ 0 ∀i, q, t (14)

qiqt−1 + riqk ≥ ûiqk ∀i, q, t, k ≤ t− 1 (15)

Īiqt + Γiqt−1qiqt−1 +
t−1∑
k=0

riqk + dtirq + ztirq ≤ Ciq ∀i, r, q, t (16)∑
r

xt
r ≤ 1 ∀t (17)∑

r

ytrq ≤ 1 ∀t, q (18)

dtirq ≥ 0, qiqt ≥ 0, riqk ≥ 0 ∀i, r, q, t, k ≤ t− 1 (19)

xt
r, y

t
rq binary ∀r, t, q, Iiqt, d

t
irq, z

t
irq ≥ 0 ∀i, r, q, t (20)

3. Computational Results. We have performed computational experiments for MCIR-
P and its robust counterpart RMCIRP using randomly generated instances. All formu-
lations are coded using AMPL employing CPLEX 12.8 as solver and a time limit of 10
minutes is set for all computations. In the following, notations I, R, T also denote cardi-
nality of set I, R, T . For route cost cr, we first generated R random subsets of retailers
from total I retailers and computed optimal routing cost for each subset of retailers by
solving symmetric traveling salesman problem.
In Table 1, we evaluated the effect of multi-compartment delivery vehicles in terms of

delivery cost, vehicle capacity utilization, retailers’ average inventory level and holding
cost. For this particular instance, (I, R, T ) = (35, 68, 12), Oq = 900, Pq = 300 and annual
holding cost is set as 20%. Average daily demand uiqt for product q is randomly generated
from uniform (20, 50) and retailer’s storage capacity Ciq is set at between 100 and 150.
For inventory routing problems and its robust model, the parameters I between 5 and 50,
T up to 7 are reported in the previous research [13,15]. Also, for the multi-compartment
delivery problem similar to MCIRP, instances with 50 retailers and 5 time horizons are
considered [16]. We denote fX =

∑
r,t x

t
r, fY =

∑
r,q,t y

t
rq as the total number of visits

by the multi-compartment and single-compartment vehicles and volX =
∑

i,r,q,t d
t
irq and

volY =
∑

i,r,q,t z
t
irq as the total delivery volume by type X and type Yq vehicles. Table 1

compares the results when (1) only single-temperature vehicles are used, (2) only multi-
compartments vehicles are used, and (3) one multi-compartment vehicle and many single-
temperature vehicles are used. The second and third columns in Table 1 denote the
optimal value zMCIRP and transportation cost in zMCIRP, (fX , fY ) column denotes total
delivery visit by vehicle types X and Y , ‘average load factor’ column denotes average
delivery volume divided by vehicle capacity, avg(Iiqt) average inventory level of retailers,
and the last column denotes average holding cost of retailers. Note that case 2 has
the minimum objective value since deploying multi-compartment vehicles reduces both
the number of visit and delivery volumes to retailers. Also, vehicle load factor shows
multi-compartment vehicles can utilize its capacity better than single-temperature vehicles
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Table 1. Comparison of single and multi-compartment vehicle delivery schedule

Scenarios zMCIRP
Transportation (fX , fY ) Average load avg(Iiqt) avg

(∑
t,q

hiqIiqt

)
cost factor

(1) 7289.26 6329.26 (0, 32) 56% 856.82 171.36

(2) 4194.18 3534.18 (22, 0) 82% 519.83 103.97

(3) 5913.09 5013.09 (16, 14) 60% 711.70 142.34

cases. Retailer’s average inventory level and holding cost also indicate benefits of multi-
compartment vehicle deliveries.

To evaluate the performance of the robust model RMCIRP, we generated three more
instances of MCIRP and corresponding RMCIRP instances by varying budget of robust-
ness Γiqt and demand half length ûiqt/ūiqt. Note that the budget of robustness Γiqt has
property that Γiqt−1 ≤ Γiqt for each t ∈ T . For time horizon T , we let the maximum ro-
bustness budget Γiqt = {1, 2, . . . , T}, and for a fraction u ∈ (0, 1), uΓiqt denotes sequences
{⌊u1⌋ , ⌊u2⌋ , . . . , ⌊uT ⌋}. For simplicity, we assume that the budget of robustness Γiqt is
same for all (i, q). In Table 2, volX% denotes the ratio of delivery volume by vehicle type
X in percentage and ‘gap’ column denotes zincumbentIP/zbestLP − 1.0 from CPLEX branch-
and-bound tree. Thus ‘gap’ column denotes the distance from optimality. Column zMCIRP

is the best integer programming objective value at the termination. For three instances of
MCIRP in Table 2, we can see that as the model parameters (I, R, T ) increase, optimality
gap increases. And the ratio of delivery volume between type X and type Y vehicles does
not show clear correlation with the model size. We can speculate that optimal delivery
schedule depends on all parameters including vehicle capacities, average demand, and
storage capacity as well as route parameters.

Table 2. Results for MCIRP instances

(I, R, T ) Pq Oq volX% volY% gap zMCIRP

1 (6, 25, 7) 50 150 78.7 21.3 5.7% 1332
2 (10, 40, 7) 150 300 100.0 0 8.2% 1436
3 (10, 40, 12) 150 300 86.5 13.5 19.2% 1665

In Table 3, the first column denotes the MCIRP problem number in Table 2 and the
second column budget of robustness, third column demand half width, Inccost and Incvol
show increase percentage of the objective value and total delivery volume relative to
MCIRP solution. Last column in Table 3 shows holding cost percentage in the objective
value zRMCIRP. We can see that as the budget of robustness and demand half width
increase, Inccost and Incvol increase. Also, as the demand half width increases, volY%
increases. This could be caused by the capacity limits of type X vehicles. For second
group of RMCIRP instances from row 6 to 14, increase of Pq results in delivery by type
X vehicles only. We still can see that as the budget of robustness and demand half width
increase, the delivery volume increases. For the third group of instances from row 15 to
17, as the planning horizon increases, delivery by type Y vehicles increases.

4. Conclusions. Traditional reefers used in the last mile delivery of cold chain have
single temperature zone set in its compartment. If an order contains mixed temperature
requirements across several products, multiple visits to the same retailer can happen.
In order to provide cost-effective last mile delivery of perishable products, we propose
a multi-compartment delivery model where each compartment has different temperature
zones that allow joint delivery of mixed order. For protecting stockout caused by demand
forecast error or lack of vehicle capacity, we also formulated a robust programming model
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Table 3. Results for RMCIRP for instances in Table 2

Γiqt ûiqt/ūiqt volX% volY% Inccost% Incvol% cH%

1

0.3Γiqt 0.05 78.5 21.5 1.5 4.8 3.1
0.5Γiqt 0.025 78.4 21.6 3.6 4.0 2.7
0.5Γiqt 0.05 78.9 21.1 6.2 6.4 2.5
0.5Γiqt 0.1 63.5 36.5 14.2 12.0 2.1
Γiqt 0.05 77.7 22.3 12.3 9.9 2.0

2

0.3Γiqt 0.025 100.0 0 2.9 12 7.0
0.3Γiqt 0.05 100.0 0 1.2 15 7.1
0.3Γiqt 0.1 100.0 0 3.3 15 7.4
0.5Γiqt 0.025 100.0 0 1.2 14 7.0
0.5Γiqt 0.05 100.0 0 2.9 16 7.0
0.5Γiqt 0.1 100.0 0 3.3 19 7.1
Γiqt 0.025 100.0 0 3.3 13 7.4
Γiqt 0.05 100.0 0 2.9 19 7.4
Γiqt 0.1 100.0 0 13.2 33 6.1

3

0.3Γiqt 0.025 87.5 12.5 0.29 8.85 6.4
0.3Γiqt 0.05 89.3 10.7 0.41 11.95 6.0
0.3Γiqt 0.1 100.0 0 3.86 13.55 5.6

for the multi-compartment delivery problem. Our model assumes pre-generated routes
data, so that the optimal solution from the proposed model is a good heuristic solution.
Our approach can be regarded as a column generation heuristic algorithm with a limited
set of columns.
From the randomly generated instances, we observed that multi-compartment vehicles

can reduce number of visits to retailers that reduces total transportation cost and increase
utilization of cargo capacities compared to traditional single temperature reefers. From
the robust programming instances, we observed that the capacities of multi-compartment,
budget of robustness, and routing structures affect delivery patterns, but as the mixed
order increases, we observed that multi-compartment vehicle’s loading increases.
Based on randomly generated case study, we found that by deploying mixed fleet of

single- and multi-temperature vehicles, one can save transportation cost and retailers’
average inventory holding cost and can achieve efficient frequent small quantity delivery
to all retailers. In the follow-up study, we will compare the proposed model with the
expanded model without route data by adopting branch-and-cut method.
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