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Abstract. What is an essential difference between the expert movement and the novice
one where the movement plays an important role such as dancing, playing a darts game,
or preparing tea at Japanese tea ceremony? We would like to figure it out from the
movement of the human joints at an activity, and utilize it to improve our behavior. In
our study, a Structure Sensor, Kinect-like 3D image sensor, is used to track and record
3-dimensional positions of the human joints during an action. The device is portable
and does not require any sensors nor markers attached to observed persons. We then
investigate the effectiveness of a statistical approach. Results of preliminary experiments
established for throwing a set of darts will be reported.
Keywords: Behavior analysis, Human action recognition, 3D image sensor, Kinect,
Principal component analysis

1. Introduction. In this paper, we try to extract motion features from movement of
throwing a set of darts and figure out the key difference in motion between expert darts
players and novice ones.

There have been researches to analyze human movements and extract motion features.
The most of them aim to classify movements for behavior recognition where it is necessary
to remove individuality and extract common features of the movement. Some attempt to
extract difference in motion feature to detect special condition such as illness [1-4]. Goals
are varied in researches, but target of the analysis is mostly limited to walking behavior.

To track human movement, previous researches use motion capture [5,6], acceleration
sensors [2,3,7,8] and/or environmental sensors [9]. Whichever chosen, something like
markers or sensors should be attached to human body or environment. We use a Structure
Sensor from Occipital, a Microsoft’s Kinect-like 3D sensor, which does not require markers
nor sensors to be attached to observed players.

Throughout the previous researches, several methods have been proposed for extracting
motion features. Main streams are frequency analysis [4,7] and statistical methods [1,8].
We thought the frequency analysis was more suitable for periodic movement like walking
and chose PCA (Principal Component Analysis), a well-known statistical analysis method.
PCA is mathematically similar to Singular Value Decomposition used in [1] and [8].

There is at least one research to try extracting the motion differences between expert
tennis players and novice ones [10]. They used a motion capture to track human motion
and extension of DTW (Dynamic Time Warping) [11] to extract motion differences. It is
closely related to our research in which we also use DTW but not for extracting motion
differences but for its original purpose, to align time series of data.
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The structure of the paper is as follows. The procedure of analysis is explained in
Section 2. The tools and software used in the experiments are detailed in Section 3.
The problem to be solved in this paper is explained in Section 4. The configuration of
experiments and results are explained in Sections 5 and 6 respectively. In Section 7, the
paper is concluded.

2. Procedure of Analysis. Let pij(t) = (xij(t), yij(t), zij(t)) be a 3-dimensional po-
sition vector of the j-th joint of the i-th player at the frame number t. A set of joint
positions for the i-th player at frame t becomes p i(t) = (pi1(t),pi2(t), . . . ,piJ(t)) where
J is the number of observed joint positions. The obtained sequence of the joint positions
for the i-th player becomes pi = (pi(0),pi(1), . . . ,p i(Ti)) where Ti is the total number of
observed frames. We here call it a “joint position vector”.
We collect the joint position vectors for players and compose a matrix P =

(

pT
1
,pT

2
, . . . ,

pT
N

)

where N is the total numbers of observed players. At this point, we apply FastDTW
[12] to adjusting the length of the vectors Ti to the T = maxi Ti since Ti generally varies
for each observation. Furthermore, we normalize P so that the average and the standard
deviation of the elements become 0 and 1 respectively. The resulting matrix P can be
rewritten as

P =


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where L = 3× J × (T + 1).
PCA is then applied to the matrix P to compressing and obtaining a principal com-

ponent matrix Q which can be written as Q =
(

qT
1
, qT

2
, . . . , qT

M

)

where M is the number
of principal components. q i is defined by q i = (q i1, q i2, . . . , q iL) where q ij is the j-th
principal component score of the i-th principal component. In general, q i with the smaller
index number i describes the more common features of pi, and contrarily, q i with the
larger index describes the more minor features.
We assume that q

1
(and maybe q

2
) might be similar between expert and novice players

when they both perform the same movement. We also assume that the remaining principal
component vectors with the larger index numbers describe the minor features which can
explain differences in motion between expert and novice players.

3. Capturing Joint Positions. A Structure Sensor shown in Figure 1 is used to capture
time series of depth images. It is very small with 119.2 mm in width, 28 mm in height, and
29 mm in depth. It can capture 30 or 60 frames per second, where each frame contains
spatial information in a range from 40 cm to 3.5 m in depth, 58 degrees in horizontal and
45 degrees in vertical to an accuracy of less than 30 mm.

Figure 1. A Structure Sensor mounted on a tripod
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At the same time, each of obtained depth images is processed through OpenNI2 and
NiTE2 libraries to detect human shape in the image and calculate 3-dimensional positions
of the human joints. It can be done almost immediately. Accordingly, for each player,
30 to 60 sets of fifteen joint positions per second can be obtained (J = 15 in Section
2). Fifteen positions are head, neck, torso, shoulder (right/left), elbow (right/left), hand
(right/left), hip (right/left), knee (right/left), and foot (right/left). A depth image and
detected joint positions drawn on the image are shown in Figure 2.

Figure 2. An example of captured depth image and joint positions drawn
on the image

4. Target Behavior. Our target is a motion throwing a set of three darts to a dartboard.
We call this a “turn”. This is a very basic movement when playing darts games. There
are many different darts games but almost all require throwing a set of three darts in a
turn.

A “dart” consists of a tip, a metal body called “barrel”, and a plastic tail with several
solid wings called “flight”. In the experiments, we use so-called “soft dart” which is
equipped with not a metal tip but a plastic tip.

A 451 mm-wide official size dartboard is fixed on the wall to keep its center at a height
of 173 cm from the floor and a distance of 240 cm from the throwing position. The sensor
is put under the dartboard at a height of 80 cm from the floor. The configuration of the
equipment is shown in Figure 3.

Figure 3. The configuration of capturing system
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5. Experiment. We asked 7 participants to throw a set of darts for several turns. We
totally obtained joint trajectories for 37 turns. Since throwing paces are different individ-
ually, the time taken for a turn varied from about 3 to 10 seconds. In the experiment, we
configure the sensor with 30 frames per second, and consequently, we could capture about
100 to 300 frames per player. We actually could capture 109 frames at the minimum and
317 frames at the maximum (T = 317 in Section 2).
Also, the players were classified into expert, intermediate, and novice players accord-

ing to their experience. As a result, 2 players were distinguished as expert, 2 players
intermediate, and remaining 3 players as novice. Hereafter, (ex), (mid), and (nb) at the
index indicate expert, intermediate and novice respectively. As a result, we could obtain
[14, 265× 37] matrix as P .

6. Result. We applied PCA to the obtained matrix P and got totally 23 principal compo-
nents (M = 23 in Section 2). The contribution ratios of the first 6 of them and cumulative
ones are shown in Table 1 where PC stands for principal component. According to the
cumulative contribution ratios, the first 4 principal components can explain about two
thirds of movements. It is not enough large but the remaining 19 principal components
only have very small contribution ratio of less than 5.4% and we decided to investigate
them.

Table 1. Contribution ratios of principal components

PC1 PC2 PC3 PC4 PC5 PC6
Ratio (%) 25.5 17.7 13.1 7.0 5.4 4.2
Cum. (%) 25.5 43.2 56.3 63.3 68.7 72.9

Observed trajectories of joints in the experiment are mapped onto the principal com-
ponents space by using the following equation:

PCij = q i · p
T
j

where i is the index of the principal components and j is the index of observed trajectory.
They are plotted in Figure 4 where turns by the same players are plotted with the same
markers. The color of markers denotes the ability of the players: black markers for expert
players ‘A1’ and ‘A2’, gray markers for intermediate ‘B1’ and ‘B2’, and white markers
for novice ‘C1’, ‘C2’ and ‘C3’. As shown in the figure, the expert, the intermediate, and
the novice are well separated in the plot of PC2-PC3. It means that these two principal
components of PC2 and PC3 seem the most important to distinguish the player levels
between expert, intermediate and novice.
Figure 5 shows q i for i = 1, 2, 3, 4, the component scores of PC1 to PC4. Figure 5(a)

plots an average score over joints, and Figure 5(b) plots an average score over frames.
In both plots, the darker pixels correspond to greater values and the brighter to smaller
values.
There are three darker areas followed by lighter area seen around 50, 150, and 250

frames in Figure 5(a). This oscillation of q i is corresponding to the movements throwing
three darts. It is rather clearly observed in PC4. However, no significant characteristics
can be observed in PC2 and PC3.
In Figure 5(b), it is quite interesting that both PC1 and PC2 have the larger values

for the left hand and the left foot. It is understandable that values for the right hand
and the right elbow become large in PC1 since all the players threw darts by the right
arm. However, the left hand only holds remaining darts and the left foot is free from the
weight during throwing. Values for the left elbow, the left shoulder, the left knee and the
left hip are also large in PC2. Neck and head also have the large values in PC3. These
results hint that the movement of the left half of the body and the head is very important
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Figure 4. Movements throwing darts mapped on the principal compo-
nents space

(a) Sorted by the frame (b) Sorted by the joint

Figure 5. A plot of q i for i = 1, 2, 3, 4



492 H. MURAO

for playing darts well, though throwing darts by the right arm and the body weight is
applied to the right leg.

7. Conclusion. In this study, we have tried to use Kinect-like 3D sensor and PCA to the
behavior analysis to find the key movements distinguishing expert and novice players. It
is applied to darts-throwing and obtained an interesting result of suggesting importance
of the movement of the left half of the body. It is usually thought not important much.
Further development of analysis method is required for investigating key movements but
we believe we could show the possibility of the approach.
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