
ICIC Express Letters
Part B: Applications ICIC International c⃝2020 ISSN 2185-2766
Volume 11, Number 5, May 2020 pp. 427–437

THE ACCURACY MEASUREMENT OF LOGGING SYSTEMS
ON DIFFERENT HARDWARE ENVIRONMENTS
IN INFRASTRUCTURE AS A SERVICE CLOUD

Thongrob Auxsorn1, Winai Wongthai1,2,∗, Thanathorn Porka1

and Wichep Jaiboon3

1Department of Computer Science and Information Technology
2Research Center for Academic Excellence in Nonlinear Analysis and Optimization

Faculty of Science
Naresuan University

99 Moo 9, Tambon Tha Pho, Muang, Phitsanulok 65000, Thailand
∗Corresponding author: winaiw@nu.ac.th

3Department of Computer Science
Faculty of Business and Public Administration

Nation University
444 Vajiravudh Damnoen Road, Lampang 52000, Thailand

Received November 2019; accepted February 2020

Abstract. Infrastructure as a Service (IaaS) cloud provides virtual computing resources
such as a Virtual Machine (VM) to a customer. Many companies desire to deploy this
cloud; however, data security is an issue. The issue affects the reliability of a customer
and provider, such as when hackers were able to access a data or critical file of a cus-
tomer. Thus, researchers introduce a logging system to mitigate the risks associated with
this issue. A logging system is in a host system and can capture some incidents that
appeared in a customer VM. Then, the system stores the captured data in a log file to
be used as evidence to mitigate the risks. This paper focuses on examining the accuracy
of our previous logging system. This is done by varying the numbers of CPU cores and
the size of the main memory of both the host system and targeted VM of a customer.
The contributions of this paper are the following. Firstly, we fully introduced the method
of varying the sizes of main memory and the numbers of CPU cores of both a host sys-
tem of the logging system and targeted VM. This method can facilitate the other types
of the accuracy or performance measurement of a logging system. Secondly, we found
and illustrated the inappropriate hardware configurations of the host system, the targeted
customer VM, and the association of both. For example, to increase the CPU cores of
the host system of the logging system will not away increase the accuracy of the logging
system. Thirdly, we also found and illustrated the appropriate configurations. All these
contributions can help in decreasing the cost, time, effort, and energy of a logging system
development in an IaaS ecosystem. To the best of our knowledge, there are no these three
contributions in the literature.
Keywords: Cloud security, Logging system, CPU cores, Main memory, Accuracy

1. Introduction. The cloud exploits virtualization technology to enable itself to store
and process huge data [1], and is increasingly important for an IT ecosystem [2, 3]. An
Infrastructure as a Service (IaaS) cloud is renting Virtual Machine (VM) resources by
a cloud customer from a cloud provider. This cloud is gaining popularity in the IT
ecosystem. It has been used for many types of applications. The expense of the cloud
is calculated from how much the resources that were used. The cloud is a reasonable
choice for organizations to apply in the IT departments. However, sensitive data that
are processed outside the enterprise can cause risks to the data [4]. The cloud causes

DOI: 10.24507/icicelb.11.05.427

427



428 T. AUXSORN, W. WONGTHAI, T. PORKA AND W. JAIBOON

many security issues, which are a significant obstacle for its marketing situation [5]. To
officially indicate the issues, Cloud Security Alliance (CSA) identifies the threats of this
cloud [6, 7]. A single security method may not address the issues. Thus, traditional and
new technologies and strategies should be combined to deal with the issues.
Many researchers are working on mitigating the risks associated with the threats. How-

ever, this paper focuses on examining the accuracy of our previous logging system. The
system records some appropriate incidents in the cloud VM. Thus, whenever there is an
issue, a log file can be retrieved from the logging system for analysis and investigation to
mitigate the risks. The accuracy measurement is crucial for performance measurement of
the logging system [8, 9, 10]. This paper focuses on examining the accuracy of the logging
system. This is done by the method of varying the size of main memory and the numbers
of CPU cores of both a host system of the logging system and targeted VM. The results
were obtained, and the discussions and conclusion were made. Research Gaps: There
is no the accuracy measurement of the logging system by the method of varying the CPU
core numbers and main memory of both a host system of the system and targeted VM
in the literature. Thus, we aim to perform the accuracy measurement of our previous
logging system on different hardware environments of the host system in the IaaS cloud.
Summary of contributions: We introduced the method of varying the sizes of main

memory and the numbers of CPU cores of both a host system of the logging system and
targeted VM. This method can facilitate the other types of the accuracy or performance
measurement of a logging system. The example is to measure the decreed performance of
targeted customer VM, while running in the host system, not only to measure the logging
system in the host system. Secondly, we found and illustrated the inappropriate hardware
configurations of the host system, the targeted customer VM, and the association of both.
For example, to increase the CPU cores of the host system of the logging system will not
away increase the accuracy of the logging system. Thirdly, we also found and illustrated
the appropriate configurations. For example, when the logging system works with core
numbers such as 1 or 8, this may cause the best accuracy. The last two constitutions can be
useful to ensure that the designers who design a logging system like our system can avoid
the inappropriate hardware configurations, and can achieve the right configurations. This
can help in reducing the cost, time, effort, and energy of a logging system development in
an IaaS ecosystem. To the best of our knowledge, there are no these three contributions
in the literature.

2. Background.

2.1. The IaaS and logging system architectures. Figure 1 illustrates both an IaaS
cloud architecture and our existing logging system architecture. Both architectures are
adapted from our previous work [10] for the experimental purposes of this paper. Firstly,
this section describes components of the IaaS cloud architecture using terminologies of Xen
[11]. Then, Sections 2.2 and 2.3 will describe the existing logging system architecture.
In Figure 1, the components of the IaaS architecture are shown as white boxes in the
figure. This includes the hypervisor, dom0, domU, hw0, hwU, disk0, diskU, and memU.
The box with number 2 in the figure is a hypervisor software that can create more than
one VM in one physical machine. The topmost left box in the figure is the domain 0
(dom0) that is a manager of all the created VMs. The dom0 itself is also a VM and
is launched by the hypervisor at the system booting duration. Any component with ‘0’
at the end of its name indicates that it is physically managed and owned by a cloud
provider. Similarly, ‘U’ indicates that the component is virtually managed and owned by
a cloud customer. The dom0 exclusively accesses hw0 and manages all the created VMs
or domUs. A user domain (domU) is a user VM that runs on top of the hypervisor, see
the topmost right box of the figure. A domU is an IaaS cloud product that the provider



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.11, NO.5, 2020 429

Figure 1. The IaaS and logging system architectures, adapted from [10]

offers to an IaaS customer. HwU is physically located in hw0 (which is owned by dom0
or by the provider and virtually owned by domU owner or by the customer), and it is
domU’s virtual hardware. Disk0 is a physical disk of the hw0, and diskU is a virtual disk
of a domU. MemU is the virtual main memory of domU.

2.2. The logging system types and the logger. There are two types of logging sys-
tems. The first is an interception approach which is to intercept system calls of a domU.
A system call provides the interface between a user application and kernel spaces [12].
For example, when our read process needs to read s.txt file, the read process needs to
use three system calls: open, read, and close. Thus, the interception approach needs to
intercept these three calls to capture desired logging data. The example of this approach
is flogger [13]. It is a tool that can intercept file operations of a file that is in a customer
VM. This tool can briefly check every file or folder accesses. It also can keep monitoring
real-time generated system logs to save such monitored data as log files. The second
approach is a memory introspection approach. The technical detail of this approach to
obtain the logging data combines two factors: using memory introspection tools (such as
LibVMI [14]) and the comprehension of the knowledge of Linux kernel data structures for
virtual memory. In this paper, this approach is basically to access and capture logging
data in the main memory of a customer targeted VM from the host VM. The example of
this approach is a logging system that was introduced by [15]. They describe that this
system is in the host VM of a provider. The system can also collect and store logging
data about customer VM’s process activities such as what process accesses which file.
The logging system consists of a logging process and log file [15]. The logging process
is responsible for recording necessary logging data. In our experiment in Section 3, we
call this process as the ‘logger’. The log file is used for storing the logging data obtained
from the logger. In this paper, we focus on this logging system from [15] to monitor and
capture the logging data of activities of what process accesses a critical file in a customer
VM’s disk.

2.3. How the system works. Figure 1 illustrates the system architecture of the logging
system from [10]. See the box inside domU in Figure 1, it is the read process or for short
‘read’. In the experiment, we assume that this process can be controlled by an attacker
and maliciously read the critical file or s.txt or the document shape inside diskU. The
read process in this paper refers to a process of a malicious user which he or she uses to
access the critical file of the customer in diskU. When the read application is executed
in domU, the operating system or OS of domU creates the read process. Then, the OS
reserves some area of main memory (memU) of a domU. We call this area as read mem,
see the oval shape in memU in hwU. The read mem stores the data of the read process
such as process identification (PID), process name, user ID definition (UID), and the file
name that this process is reading such as s.txt in diskU in Figure 1. In dom0, the main



430 T. AUXSORN, W. WONGTHAI, T. PORKA AND W. JAIBOON

components of the logging system architecture are logger or the shaded box in dom0,
LibVMI or the white box in dom0, and log files or the shaded box in disk0. LibVMI
is a memory introspection tool to read read mem from memU. Figure 1 illustrates the
introspection approach that uses LibVMI to obtain logging data from memU. Usually, the
LibVMI performs from a dom0 to obtain logging data of the s.txt or the document shape
in diskU in Figure 1. We can deploy LibVMI in the dom0 to read the memory space
or read mem in memU in Figure 1. This memory space holds all the information that
we need to record, which is a log file to obtain the contents of the history of critical file
s.txt using introspection listed below. The steps are the circles with numbers in Figure
1. Step1, the logger in dom0 calls LibVMI to access memU to get the information in
read mem (step2) such as a file name of s.txt. Then, the obtained information is returned
to the logger. The logger manages the obtained information and then writes (in step3)
the information into the log file in disk0.

2.4. The logger and accuracy.

2.4.1. The logger hardware environment configurations. The read process can have activ-
ities with s.txt or the document shape in diskU in Figure 1. The details of activities and
of how the logger (the white box in the user level of the dom0) works were illustrated in
Figure 1. The main objective of the experiment in this paper is to measure the accuracy
of the logger when the logger is recording logging data from some of the activities with
s.txt file. To see the trends of the accuracy of the logger, the experiment or the measure-
ment will be performed on different hardware configuration environments of the logger.
In Figure 1 and on the different hardware configuration environments of the logger, the
experiment will be performed by measuring the accuracy values of the logger after each
hardware environment configuration by the method of varying the numbers of CPU cores
and sizes of the main memory of both dom0 and domU. The measurement of the accuracy
of the logger is also performed i) when the read process is reading s.txt in diskU, and ii)
when the logger is capturing the desired logging data from the read mem.

2.4.2. Hit and miss. Briefly, the accuracy of the logger or the shaded box in the dom0 is
measured by a number of times that the logger captures the right file name or a string
“s.txt” in read mem. This is called 1 ‘hit’; otherwise it is 1 ‘miss’. For example, if the
read process reads s.txt files 100 times, and the logger can capture the string “s.txt” in
read mem for 100 times or 100 hits, this means that the accuracy of the logger is 100%
[16].

2.4.3. The accuracy of the logger and sleeping time. Section 2.4.2 described that the read
process reads s.txt files 100 times and the logger can capture the string “s.txt” in read mem
100 times or 100 hits, this means that the accuracy of the logger is 100%. And from our
previous work [16], we measured our previous logger with a four CPU cores machine.
Then, we found that the accuracy of this logger was 100% when the sleeping time is 65
ms. A sleeping time is an idle time after the read process completes opening and reading
tasks of s.txt, and before it is terminated. Thus, when we state that ‘the logger has 100%
accuracy at 65 ms’, this means that “in order to enable our previous logger to capture
the right file name value as “s.txt” for every single time or we can say 100% at 65 ms,
the read process needs to be in memU at least 65 ms after it finishes reading tasks but
before it is terminated”. Therefore, in this experiment, from the core(s) from 1 to 8, each
core will be configured with 65 ms as the same as our previous work [16]. However, in
the experiment in this paper, we will vary the CPU core numbers from 1 core to 8 cores.
Then, we will measure the accuracy of the logger when the logger is running in a machine
with 1 to 8 cores. Then, we will discuss all eight accuracy values of each logger with 1 to
8 CPU cores.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.11, NO.5, 2020 431

3. The Implementation.

3.1. The hardware and software experimental environment. To vary CPU core
numbers for the experiment in this paper here, in dom0, we divide the environment into
two parts. The first one is the hardware part, and we set up the experiment environment
based on a Lenovo ThinkStation S20 computer machine. This machine comprises an Intel
Xeon 3.06 GHz that is CPU 64-bit eight cores, SDRAM 8 GB of main memory, and 320
GB of secondary memory. The second one is the software part, we installed a Fedora 16
64-bit as the operating system or OS of the machine in the experiment, and also installed
Xen 4.1.4 hypervisor on top of the OS. This hypervisor is used to simulate an IaaS cloud
on this machine or Figure 1. Then we installed LibVMI 0.10.1 library on the OS that
can be called by the logger to access to memU of domU from dom0. In domU, we also
installed a Fedora 16 64-bit as the OS and set up the read application on the OS.

3.2. The method of varying the numbers of CPU cores of both domU and
dom0. In this experiment, a domU is fixed to 1 GB main memory (memU).

3.2.1. Alignment of varying of CPU cores. This section studies the trend of the accuracy
values of the logger in different numbers of CPU cores configuration environment. The
environment is done by varying the numbers of CPU cores of dom0 and domU. In every
configuration, the logger will still perform the same routines as discussed in Figure 1 in
Section 2.3. Mainly from the figure, the logger needs to capture the necessary data from
memU. The data are in read mem and included: PID of the read process, the name of the
read, UID or the ID of the read process’s owner, and the file name that the read process
is reading, as described in Section 2.3. In the alignment of varying of CPU cores, see
the top dash-lined box in Figure 2(a), it is d01c which represents a dom0 that deploys 1
CPU core. Then, the second dash-lined box from the top of Figure 2(a) is d02c which
represents a dom0 that deploys CPU 2 cores, and so on, until d08c or the first dash-lined
box from the bottom of Figure 2(a). Thus, this box represents a dom0 that deploys 8
CPU cores. Similarly, see the shaded box on the top of Figure 2(a), it is du1c or domU
that deploys 1 CPU core. Then, the second shaded box from the top of Figure 2(a) is
du2c which represents a domU that deploys 2 CPU cores and so on, until du8c which
represents a domU that deploys 8 CPU cores, see the third shaded box from the top of
Figure 2(a).

Figure 2. The method of varying the numbers of CPU cores and the sizes
of main memory of both domU and dom0



432 T. AUXSORN, W. WONGTHAI, T. PORKA AND W. JAIBOON

3.2.2. Overall CPU cores varying labs. The full definition of a lab will be explained in
Section 3.2.3. This section here explains the overall varying labs. The first eight labs,
see in Figure 2(a), the freeform dotted shape that rounds both the top dash-lined box
with labeled ‘d01c’ and the top shaded box with labeled ‘du1c’, this is one lab of our
experiment or d01c-du1c lab. This lab is also represented by the first arrow from the top
of Figure 2(a). Thus, the top white box of Figure 2(a) is d01c which is with 8 labs or
d01c-du1c, d01c-du2c, . . ., and d01c-du8c. The second 8 labs, see the second dash-lined
box from the top of Figure 2(a), it is other 8 labs. The first lab is d02c-du1c or the fourth
arrow from the top of Figure 2(a). Other seven labs are d02c-du2c, d02c-du3c, . . ., and
d02c-du8c. Then, the third to eighth 8 labs are aligned as the same pattern as the first
two labs. Thus, there are 64 labs.

3.2.3. A lab for varying cores. We needed to modify the logger and the read process in
Figure 1. Thus, the routines of the logger and the read here may be slightly changed
from Figure 1. See in Figure 2(a) at the freeform dotted shape that rounds both the top
dash-lined box with labeled ‘d01c’ and the top shaded box with labeled ‘du1c’, this is a
lab. It composes of 3 steps or s1 to s3. S1, we run the logger in dom0. S2, we run the
read process 1000 rounds in domU. Each round is independent but is ordered from 1st

to 1000th. Thus, when the first read process is run and finished, then the second read
process is run, and finished and so on, until the 1000th read process is run and finished.
In the same time, the logger that is run only one time before the first round of the read
process running or s1. The logger will capture the “s.txt” string (this is 1 hit) from each
round of the read process starting from the 1st to 1000th rounds. Then, the logger will
store the string into the log file. This is also one round that the read process is done,
and then the logger will wait for the next read process round running. When the logger
gets the “s.txt” string of each round, each hit will be accumulated by 1 per hit. S3, the
accumulated number of hits of these 1000 rounds is written to text files. Thus, a lab
means we performed s1 to s3, and get the first accumulated number of hits of these first
1000 rounds. Then, we perform s1 to s3 for the other nine times; thus, we will get other
nine accumulated numbers of hits. Finally, we can calculate the accuracy of the logger
from these ten accumulated numbers of hits as a percentage. This is a lab and also the
first lab or lab 1, which is d01c-du1c or the freeform dotted shape in Figure 2(a).

3.2.4. First 8 for d01c and 64 labs for all d01c to d08c. See the top box of Figure 2(a), it
is 8 labs. The first lab or lab 1 is the freeform dotted shape of d01c-du1c as just discussed
in Section 3.2.3 above. Then, the seven labs are outside the freeform dotted shape but
still in the top box of Figure 2(a). They are lab 2 or d01c-du2c or the second arrow
from the top of Figure 2(a), lab 3 or d01c-du3c,. . . , and lab 8 or d01c-du8c or the third
arrow from the top of Figure 2(a). This is 8 labs for d01c or the top white box in Figure
2(a). What is 64 labs, the first 8 labs for d01c or the top white box in Figure 2(a) is just
discussed above. Then, there will be other 8 labs for d02c (the first freeform shape from
the top of Figure 2(a)) and other 8 labs for d03c and so on, until the last set of 8 labs or
d08c or the first freeform box from the bottom of Figure 2(a). So, the total is 64 labs or
a whole of Figure 2(a).

3.3. Varying the sizes of main memory of both dom0 and domU.

3.3.1. Alignment of varying of main memory. This section studies the trend of the accu-
racy of the logger when varying the sizes of the main memory of dom0 and domU. The
logger needs to capture the necessary logging data from domU. The data are in read mem
and included: PID of the read process, the name of the read process, UID, and the file
name that the read process is reading, as described in Section 2.3. For dom0, the top
dash-lined box in Figure 2(b) is m02G which represents a dom0 that deploys 2 GB of
main memory (mem0). Then, the second dash-lined box from the top of Figure 2(b) is



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.11, NO.5, 2020 433

m04G which represents a dom0 that deploys 4 GB of mem0. Lastly, the last dash-lined
box from the top of Figure 2(b) is m08G which represents a dom0 that deploys 8 GB of
mem0. For domU, similarly, the shaded box on the top of Figure 2(b) is mu1G which
represents a domU that deploys 1 GB of memU. Mu2G represents a domU that deploys
2 GB of memU. Finally, the third shaded box from the top of Figure 2(b) is mu3G which
represents a domU that deploys 3 GB of memU. We will explain the first 3 labs or the
first white box on the top of Figure 2(b), as follows. In Figure 2(b), see the freeform
dotted shape that rounds both the top dash-lined box with labeled ‘m02G’ and the top
shaded box with labeled ‘mu1G’, this is one lab of our experiment or m02G-mu1G lab
or the first arrow on the top of Figure 2(b). Thus, see the top white box of Figure 2(b),
m02G is with 3 labs or m02G-mu1G, m02G-mu2G, and m02G-mu3G. We will explain
the second 3 labs or the second white box on the top of Figure 2(b), as follows. See
the second dash-lined box from the top of Figure 2(b), it is the other three labs. The
first lab is m04G-mu1G or the fourth arrow from the top of Figure 2(b). Thus, see the
second white box from the top of Figure 2(b), m04G is with three labs or m04G-mu1G,
m04G-mu2G, and m04G-mu3G. We will explain the third or last three labs or the first
white box from the bottom of Figure 2(b), as follows. See the third dash-lined box from
the top of Figure 2(b), it is other and last three labs. The first lab is m08G-mu1G or the
seventh arrow from the top of Figure 2(b). Thus, see the first white box from the bottom
of Figure 2(b), m08G is with three labs or m08G-mu1G, m08G-mu2G, and m08G-mu3G.
Thus, there are 9 labs.

3.3.2. A lab of main memory experiment and the first 3 for m02G and 9 labs for m02G
to m08G. See in Figure 2(b) at the freeform dotted shape that rounds both the top dash-
lined box with labeled ‘m02G’ and the top shaded box with labeled ‘mu1G’, this is a lab
of varying main memory. This lab composes of 3 steps or sm1 to sm3. These three steps
are as the same s1 to s3, respectively. Thus, a lab here means we performed sm1 to sm3,
and get the first accumulated number of hits of these first 1000 rounds. Then, we perform
sm1 to sm3 for the other nine times. Thus, we will get other nine accumulated numbers
of hits. Finally, we can calculate the accuracy of the logger from these ten accumulated
numbers of hits as a percentage. This is a lab and also the first lab or lab 1 which is
m02G-mu1G or the freeform dotted shape in Figure 2(b). For the first 3 and 9 labs for
m02G, see the top white box of Figure 2(b), it is 3 labs. The first lab or lab 1 is in the
freeform dotted shape of m02G-mu1G as just discussed above. Then, the two labs are
outside the freeform shape but still in the top white box of Figure 2(b). They are lab 2 or
m02G-mu2G and lab 3 or m02G-mu3G. These 3 labs are for m02G. What are 9 labs, the
first 3 labs for m02G or the top white box of Figure 2(b) is just discussed above. Then,
there will be 3 labs for m04G (the second white box from the top of Figure 2(b)); finally,
other 3 labs for m08G or the first white box from the bottom of Figure 2(b). So, the total
is 9 labs or a whole of Figure 2(b).

4. Results and Discussions.

4.1. The results of varying the number of CPU cores of dom0. The results here
are from the experiment of all the three dash-lined boxes on the left of Figure 2(a). Figure
3(a) shows the results or the accuracy of the logger when varying the number of CPU
cores of dom0 from 1 to 8 cores for the experiment. The results show that the accuracy of
the logger is 100% when dom0 deploys 1 core or d01c, and 8 cores or d08c. When dom0
deploys 2 to 7 of CPU cores or the horizontal rectangle, this decreases the accuracy of
the logger. This can be seen in Figure 3(a) that the accuracies of the logger of each one
from d02c to d07c are 99%, 97%, 98%, 98%, 99%, and 99%, respectively. There is no any
accuracy of the logger with d02c to d07c as 100%, compared to the accuracy of d01c and
d08c.



434 T. AUXSORN, W. WONGTHAI, T. PORKA AND W. JAIBOON

Figure 3. The results from varying the numbers of CPU cores and the
sizes of main memory of both domU and dom0

4.2. Discussion of varying the number of CPU cores of dom0.

4.2.1. General discussion of results. For d01c, the accuracy of the logger is 100%. This is
because the operating system of dom0 has only one CPU core to serve for all processes,
including the logger process. Thus, the logger is never swapped from the current process-
ing CPU core to use a new core. This may cause the accuracy of the logger to be 100%.
More details of the swapping task are discussed in the next paragraph. For d02c to d07c,
Section 4.1 showed that when varying the number of CPU cores of dom0 from 2 to 7 cores,
this decreases the accuracy of the logger. The decreasing situation may be caused by CPU
scheduling mechanisms which make the computer system have three properties: fairness,
powerfulness, and rapidness, as argued by [17]. Because of these properties, whenever
the CPU cores are idle, the operating system must select one of the processes from the
ready queue to be executed, even the selected process is not the first one in the queue.
If the logger is the selected process to be executed, and if dom0 has more than one core,
then the logger process may be swapped from the current core to the new one. When
swapping, from example, from the current core 1 to the new core 2, the operating system
must move the processing data of the logger process from mem0 to caches of the new core
2 [18, 19]. A cache is a very high-speed memory and is a buffer between the mem0 and
the CPU [20]. Thus, this swapping operation of the operating system mentioned above
may consume the processing time of the logger process. This swapping task makes all the
accuracy of the logger in d02c to d07c labs be lower than 100%. For d08c, the accuracy of
the logger is 100%. This may be because the operating system of dom0 has enough CPU
cores to serve for all processes, including the logger. Thus, the logger may have its own
core to be exclusively processed. Thus, the operating system may not need to swap the
logger from the current core to another core. This is no extra consuming processing time
for the logger, and it can have efficient operations. Thus, this may cause the accuracy of
the logger to be 100% at d08c.

4.2.2. Trends of the accuracy from CPU cores varying. There are two trends from the
results of the varying CPU cores from the experiment. The first trend of the accuracy
of the logger is for from d01c, to d02c, and finally to d03c. The trend is decreased from
100% to 99%, and finally, to 97%, respectively. This decreasing trend may be caused by
the following reason. This reason is that d01c has no swapping tasks (discussed above)
because it has only one core, compared to d02c, which may allow the logger to be swapped.
This consumes the logger processing time. Then, this may cause the logger not be able
to capture “s.txt” in time in one read process running round. Thus, to increase the cores
of dom0 may decrease the accuracy of the logger in some appropriate core numbers such
as 2 to 3 cores, as just discussed above. The second trend of the accuracy of the logger is



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.11, NO.5, 2020 435

for from d03c to d08c and is increased from 97% to 100%, respectively. This increasing
situation may be caused by one of the reasons. The reason is that when the logger running
in dom0 that has many or enough cores such as 3 to 8, then, the operating system may
not allow the logger to be swapped from one core to another. Less swapped tasks may
decrease the logger’s processing time. Thus, the logger has sufficient time to capture the
“s.txt” in time of all the read process running rounds. Thus, to increase the cores of dom0
may increase the accuracy of the logger in some appropriate core numbers such as 3 and
to 8 cores, as just discussed above. We also believe that to increase the cores for more
than 8, the accuracy of the logger will still be 100%.

4.3. Results and discussion of varying the number of CPU cores of domU.
These results and discussions are based on the experiment in Section 3.2, which already
assumed that a domU is fixed to 1 GB memU. The conclusion of the results is that when
we vary CPU cores of domU from 1 to 8, the accuracy of the logger has no effect by this
varying task. Figure 3(b) shows all the accuracy values of the logger when increasing the
number of CPU cores of domU from 1 to 8, as discussed in the experiment in Section 3.2.
See, du1c to du8c in Figure 3(b), the results from the figure show that all the accuracy
of the logger is all the same as 100%, when domU has the number of CPU cores for all
number from 1 or du1c to 8 du8c. Thus, varying the numbers of CPU cores of domU
causes no effect on the accuracy of the logger. The two appropriate reasons could be the
following. Firstly, the logger performs in dom0, not domU, and the logger needs only
to access memU in domU. Thus, varying by increasing domU core numbers should not
affect the accuracy of the logger. This can be seen in Figure 3(b) that all the accuracy
values between du1c to du8c are the same values: 100%. Secondly, the read process is
small, then the process can work with both CPU 1 core or more than 1 cores of domU
with no difference in processing time, as also agreed by [21]. From Figure 3(b), when the
read process is running on CPU 1 core of domU, the accuracy now is 100%. And [21]
states that a small process that works with 1 or many CPU cores yields no difference in
the processing time of this process. Thus, from our experiment, when the logger works
on 1, 2,. . ., or 8 CPU cores in domU, all the accuracies of the logger are all the same as
100% which is not different. This can be seen in Figure 3(b) that all the accuracy values
between du1c to du8c are the same values: 100%. To sum up, when we vary CPU cores
of domU from 1 to 8, the accuracy of the logger has no effect by this varying task.

4.4. The results and discussions of varying the size of main memory of dom0.
Both core numbers of dom0 and domU are fixed to be 8. The conclusion is that when
we vary mem0 of dom0 from 2, to 4, finally to 8, this does not affect the accuracy of the
logger. Figure 3(c) illustrates all the accuracy of the logger when varying by increasing
the sizes of mem0 of dom0 from 2, 4, to 8. The results from Figure 3(c) are that all the
accuracy values of the logger are all the same as 100%, when dom0 has mem0 as 2, 4, and
8 GB. One of the reasons is that the logger process is small, and the logger also needs a
small area of mem0 for processing. When increasing the mem0 to be larger, the logger
still uses the same small area. Thus, this does not affect the logger accuracy. To sum
up, when we vary mem0 of dom0 from 2, 4, to 8, this does not affect the accuracy of the
logger.

4.5. The results and discussions of varying the size of main memory of domU.
Both core numbers of dom0 and domU are fixed to be 8. The conclusion is that varying
the memU of domU decreases the accuracy of the logger. See Figure 3(d), the results
from the figure show that the accuracy of the logger is decreased from 100% to 98%, and
finally to 97%, when the memU is increased from 1 GB to 2 GB, and finally to 3 GB,
respectively. This may be because increasing the size of memU of domU will enlarge the
area which is searched by the logger for the logging data. Thus, the logger will consume



436 T. AUXSORN, W. WONGTHAI, T. PORKA AND W. JAIBOON

more time to search the desired logging data in this enlarged area, compared to smaller
memU area. We also believe that enlarging the size of memU to be more than 3 GB, this
may still also decrease the accuracy of the logger.

5. Conclusions. This paper illustrated the accuracy measurement of a logging system
or logger in different hardware configurations environments in the Infrastructure as a
Service (IaaS) cloud. For the CPU cores measurement, i) when varying the numbers of
CPU cores of the host machine (dom0) of the logger, there are two perspectives of the
results. Firstly, there are three general results: at 1 core, from 2 to 7 cores, and at 8 cores.
At 1 core, the accuracy of the logger is 100%. For 2 to 7 cores, it decreases the accuracy of
the logger from 100%. Then, at 8 cores, the accuracy of the logger is still 100%. Secondly,
there are two trends in the accuracy of the logger. The first trend is for from 1, to 2,
and finally to 3 cores, and the accuracy is decreased from 100%. The second trend is for
from 3 to 8 cores, and the accuracy is increased from 97% to 100%, respectively. Thus,
to increase the cores for more than 8, the accuracy of the logger should still be 100%. ii)
When varying the numbers of CPU cores of a customer virtual machine (VM) or domU,
the results are that when we vary CPU cores of domU from 1 to 8, all the accuracy values
are 100%. Thus, the accuracy of the logger has no effect by this varying task. For the
main memory measurement, a) for dom0, the results are that when we vary main memory
or mem0 of dom0 from 2, to 4, finally to 8, this does not affect the accuracy of the logger;
b) for domU, the results are that varying the main memory memU of domU decreases the
accuracy of the logger when the memU is increased from 1 GB to 2 GB, and finally to
3 GB. We also believe that enlarging the size of memU to be more than 3 GB, this may
still also decrease the accuracy of the logger, compared to less than or equal to 3 GB. The
future work is to apply parallel programming to enhancing the accuracy of the logger.

REFERENCES

[1] A. Bhawiyuga, D. P. Kartikasari, K. Amron, O. B. Pratama and M. W. Habibi, Architectural de-
sign of IOT-cloud computing integration platform, TELKOMNIKA (Telecommunication Computing
Electronics and Control), 2019.

[2] S. Alshamrani, An efficient algorithm for monitoring virtual machines in clouds, Bulletin of Electrical
Engineering and Informatics, 2019.

[3] R. Kaur and G. Kaur, Proactive scheduling in cloud computing, Bulletin of Electrical Engineering
and Informatics, 2017.

[4] J. Brodkin, Gartner: Seven cloud-computing security risks, Infoworld, 2008.
[5] W. Liu, Research on cloud computing security problem and strategy, International Conference on

Consumer Electronics, Communications and Networks, 2012.
[6] S. Subashini and V. Kavitha, A survey on security issues in service delivery models of cloud com-

puting, Journal of Network and Computer Applications, 2011.
[7] T. T. W. Group et al., The treacherous 12: Cloud computing top threats in 2016, Cloud Security

Alliance, 2016.
[8] I. Molyneaux, The Art of Application Performance Testing: From Strategy to Tools, O’Reilly Media,

Inc., 2014.
[9] P. Chan-In and W. Wongthai, Performance improvement considerations of cloud logging systems,

ICIC Express Letters, vol.11, no.1, pp.37-43, 2017.
[10] W. Wongthai, Systematic Support for Accountability in the Cloud, Ph.D. Thesis, Newcastle Univer-

sity, 2014.
[11] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A. Ho, R. Neugebauer, I. Pratt and A.

Warfield, Xen and the art of virtualization, SIGOPS Oper. Syst. Rev., 2003.
[12] R. Love, Linux Kernel Development, 3rd Edition, Addison-Wesley Professional, 2010.
[13] R. K. Ko, P. Jagadpramana and B. S. Lee, Flogger: A file-centric logger for monitoring file access

and transfers within cloud computing environments, International Conference on Trust, Security
and Privacy in Computing and Communications, 2011.

[14] B. Payne, About the VMI Tools Project, Google Project Hosting, 2013.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.11, NO.5, 2020 437

[15] W. Wongthai, F. L. Rocha and A. van Moorsel, A generic logging template for infrastructure as
a service cloud, International Conference on Advanced Information Networking and Applications
Workshops, 2013.

[16] W. Wongthai and A. van Moorsel, Performance measurement of logging systems in infrastructure
as a service cloud, ICIC Express Letters, vol.10, no.2, pp.347-354, 2016.

[17] N. Ishkov, A Complete Guide to Linux Process Scheduling, Master Thesis, Tampere University, 2015.
[18] P. Gepner and M. F. Kowalik, Multi-core processors: New way to achieve high system performance,

International Symposium on Parallel Computing in Electrical Engineering, 2006.
[19] E. Cota-Robles, Priority Based Simultaneous Multi-Threading, United States Patent, 2003.
[20] J. Handy, The Cache Memory Book, Morgan Kaufmann, 1998.
[21] M. Rouse, Definition: Multi-Core Processor, TechTarget, vol.6, 2013.


