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Abstract. This paper presents mixed extreme value distributions to assess disaster risk.
Various types of mixed distributions are employed for analyzing fatality risk induced by
disasters that have affected the United States from 1837 to 2019. Stationary extreme val-
ue distribution may not fit the fatality distribution successfully, especially when multiple
causes affect extreme outliers in the fatality data. To analyze the risk induced by the dis-
aster, four types of parametric mixture models are investigated; the Weibull-generalized
extreme value (GEV) model, the Weibull-generalized Pareto distribution (GPD) mod-
el, the GEV-GEV model, and the GEV-GPD model. We estimate parameters by the
maximum likelihood (ML) method, except the mixing probability which is estimated by
minimizing the integrated absolute errors (IAE), so as to assign more weight to the event
in upper tail region. Exceedance frequency (FN) curves constructed from the parametric
models are compared on a goodness-of-fit measure based on residuals. The stationary
GPD model outperformed others in most criteria except the IAE, but the GPD model did
not provide good estimates at high risk levels. The GEV-GEV model and the GEV-GPD
model fitted better than other models in the IAE criteria. We constructed confidence
bands of the FN-curve for the two models. The confidence interval of the return period
for extremely high return level revealed that the GEV-GEV model provides more stable
results. The proposed methodology can be applied to other disaster data affected by mul-
tiple causes.
Keywords: Risk assessment, Mixed extreme value distribution, Exceedance frequency
(FN) curve, Integrated absolute errors (IAE), Return level, Return period

1. Introduction. The importance of risk analysis is getting higher as the consequences
of disaster are getting more catastrophic. In this study, we analyze fatality risk induced
by disasters in the United States, based on the data provided by Wikepedia [1]. Disasters
inducing fifteen or more casualties are recorded, resulting in 395 in total. The disaster has
many causes, but they can be classified into natural disaster and human-induced disaster.

We choose the exceedance frequency (FN) curve as a measure for societal risk, because
it provides a convenient visual interpretation. Most risk analyses published so far have
employed the empirical method for developing the FN-curve. However, parametric models
are useful in estimating the confidence intervals and in predicting the return period of
an extremely high return level. The parametric models based on a single distribution
may not provide satisfactory results, especially when there are multiple causes. For these
reasons, four types of parametric mixture models are investigated in this study.

We estimate parameters by maximum likelihood (ML) method, and derive exceedance
frequency (FN) curve for each model. We also assess the goodness-of-fit of each model
by integrating the absolute value of residuals. As for stationary distribution models, the
GPD model outperforms the GEV or the Weibull model, but all the mixture models fit
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better than the GPD model. The GEV-GEV model and the GEV-GPD model fit better
than other mixture models. Finally, we construct the confidence band of the FN-curve.
Then the confidence intervals of the return periods for extremely high return levels are
estimated.
This paper is organized as follows. The background of this research is described in

Section 2. Statistical analyses of the fatality data employing extreme mixture models are
explained in Section 3. Development of the FN-curves by fitting parametric models and
the following risk analyses are described in Section 4. Finally, concluding remarks are
presented in Section 5.

2. Risk Assessment.

2.1. FN-curves. Societal risk is usually represented graphically in the FN-curve which
displays the probability of exceedance as a function of the number of fatalities, on a double
logarithmic scale. Let N be the random variable of fatalities, then the probability is

1− FN(x) = P (N > x) =

∫ ∞

x

fN(y)dy (1)

Then the expected loss of life can be obtained from the FN-curve:

E(N) =

∫ ∞

0

xfN(x) dx =

∫ ∞

0

[1− FN(x)]dx (2)

Another version of the FN-curve represents the frequency of exceedance rather than the
probability. This type of FN-curve was introduced in Chapter 6 of the Reactor Safety
Study (WASH-1400) [2], and similar types of curves have been utilized in many risk
studies. The exceedance frequency per year can be easily obtained as the product of the
exceedance probability and the expected number of events per year.

2.2. Extreme value distributions. There are two famous distributions developed by
the extreme value theory [3]. The first type is the generalized extreme value (GEV)
distribution developed by block maxima approach. The GEV distribution with location
(µ), scale (σ), and shape (ξ) parameters, is seen to be

G(x) =

 exp
{
− [1 + ξ {(x− µ)/σ}]−1/ε

+

}
, ξ ̸= 0

exp [− exp {−(x− µ)/σ}] , ξ = 0
(3)

The GEV distribution comprises the Frechet (ξ > 0), the Gumbel (ξ = 0), and the
Weibull (ξ < 0) distributions. The return level denotes the magnitude of consequence
corresponding to a return period T = 1/p. Then the return level of the EVT is calculated
to be

xp =

 µ− σ

ξ

[
1− {− log(1− p)}−ξ

]
, ξ ̸= 0

µ− σ log {− log(1− p)} , ξ = 0
(4)

The second type is the generalized Pareto distribution (GPD) developed by peaks over
threshold approach. It represents the limiting distribution of observations that exceed a
selected threshold. The GPD with a threshold u is defined as

H(x) =

{
1− [1 + ξ(x− u)/σ]−1/ξ , ξ ̸= 0

1− exp [−(x− u)/σ] , ξ = 0
(5)

The GPD can be expressed by three extreme distributions: the Pareto (ξ > 0), the
exponential (ξ = 0), and the Beta distributions (ξ < 0). Let ζu denote the probability
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that an observation exceeds the threshold u, and ny denote the number of observations
per year. Then the N -year return level for the GPD can be obtained to be

xN =

{
u+ σ/ξ ×

[
(Nnyζu)

ξ − 1
]
, ξ ̸= 0

u+ σ log(Nnyζu), ξ = 0
(6)

2.3. Mixture distributions. A finite mixture model is a convex combination of multiple
distribution functions. Finite mixture models are appropriate to model heterogeneous
populations. Since Hawkins [4] presented a normal mixture model, many other mixture
models have been studied, including the log-normal mixture [5], the Weibull mixture [6],
and mixture of extreme distributions [7].

A two-fold mixture cumulative distribution function (CDF) is obtained to be

FMIX (x) = pF1(x) + (1− p)F2(x) (7)

2.4. Mixed extreme value distributions. The Weibull-GEV model, the Weibull-GPD
model, the GEV-GEV model, and the GEV-GPD model are employed. The Weibull CDF
having scale parameter θ and shape parameter α is given by

W (x) = 1− exp {−(x/θ)α} , x > 0 (8)

Then the mixed extreme distributions considered in this study are defined to be

FW−G(x) = pW (x) + (1− p)G(x) (9)

FW−H(x) = pW (x) + (1− p)H(x) (10)

FG−G(x) = pG1(x) + (1− p)G2(x) (11)

FG−H(x) = pG(x) + (1− p)H(x) (12)

3. Statistical Analysis.

3.1. Descriptive statistical analysis. Descriptive statistics are summarized in Table
1. The box plots in Figure 1 reveal highly extreme values in the fatalities. The magnitude
caused by the natural disaster is much higher than that of human-induced disaster. For
these reasons, mixed extreme models should be considered.

Table 1. Descriptive statistics of the fatality induced by disaster

Type N Unique N Min 1st Q Median Mean 3rd Q Max
Year 395 144 1837 1922 1962 1955 1989 2019
Total 395 198 15 33.5 66.0 233.2 166.5 9000

Natural 117 97 15 44.0 100.0 408.1 318.0 9000
Human 278 149 15 30.25 62.50 159.58 128.75 2996

3.2. Estimation. To estimate the parameters of each model, the maximum likelihood
(ML) method is employed. We use the R-package [8] and add-on package ‘MASS’ [9] for
the Weibull model and ‘ismev’ [10] for the GEV and GPD models. In risk analyses, it
is very important to estimate the return level or return period at high risk levels. This
motivates to employ a measure which is defined as the integrated absolute errors (IAE):

IAE =

∫ xmax

xmin

∣∣∣F̂N(x)− F ∗
N(x)

∣∣∣dx (13)

The IAE assigns more weight to the event in upper tail region, because it takes account
of the distance between events. The mixing probability is estimated by minimizing the
IAE, while distribution parameters are estimated by the ML method. The fitted FN
curves are displayed in Figure 2. The return frequencies for the stationary models show
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Figure 1. Box plot of the fatality induced by two types of disaster

Figure 2. Exceedance frequency (FN) curves

significant differences among the models, even with a return level of 2000 much lower than
10,000.
The estimates and standard errors (in parenthesis) are summarized in Table 2. The

GPD model looks best among the stationary models, but it overestimates the exceedance
frequency in upper tail area. Diagnostic plots for the GEV model and the GPD model
are illustrated in Figure 3. Significant discrepancy in the quantile plot reveals that both
the stationary GEV and GPD models may not provide satisfactory results.

3.3. Goodness-of-fit measures. To compare the goodness-of-fit for each model, the
following measures are employed. Let F̂N(x) and F ∗

N(x) be the fitted FN-curve and the
empirical FN-curve, respectively, and let x(i), i = 1, . . . , N be the order statistics. Then
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Table 2. Estimation results for the parametric models

Model shape1 scale1 location1 shape2 scale2 location2 mix-p1
Weibull 0.693 (0.023) 162.3 (12.5) − − − − −
GEV 1.168 (0.081) 41.55 (3.55) 44.15 (2.48) − − − −
GPD 0.874 (0.095) 57.03 (5.57) 15 (−) − − − −

Wei-GEV 0.939 (0.035) 123.0 (7.2) − 0.466 (0.300) 656.9 (176.1) 1630 (190) 0.950
Wei-GPD 1.160 (0.046) 98.5 (4.79) − 0.335 (0.222) 707.3 (188.3) 400.0 (−) 0.893
GEV-GEV 0.761 (0.081) 31.63 (2.32) 41.48 (2.10) 0.751 (0.216) 397.7 (85.15) 773.6 (76.4) 0.930
GEV-GPD 0.761 (0.081) 31.63 (2.32) 41.48 (2.10) 0.294 (0.213) 769.6 (201.9) 416.2 (−) 0.930

Figure 3. GEV and GPD diagnostic plots

the Kolmogorov-Smirnov type statistic is

KS = max
1≤i≤N

∣∣∣F̂N

(
x(i)

)
− F ∗

N

(
x(i)

)∣∣∣ (14)

The mean absolute error (MAE) and the mean squared error (MSE) are

MAE =
1

N

N∑
i=1

∣∣∣F̂N

(
x(i)

)
− F ∗

N

(
x(i)

)∣∣∣ (15)

MSE =
1

N

N∑
i=1

[
F̂N

(
x(i)

)
− F ∗

N

(
x(i)

)]2
(16)

Let m be the number of parameters to be estimated. Then the Akaike’s information
criterion (AIC) [11] and the Bayesian information criterion (BIC) [12] are

AIC = −2 ln
[
L
(
x1, . . . , xN ; θ̂

)]
+ 2m (17)

BIC = −2 ln
[
L
(
x1, . . . , xN ; θ̂

)]
+m ln(N) (18)

The goodness-of-fit measures evaluated for each model are summarized in Table 3. The
stationary GPD model outperformed others in most criteria except the IAE. The mixture
models fitted better than stationary models in the IAE criteria.

The residual plots for the stationary models and for the mixture models are shown in
Figure 4, where the sum of area above and below the horizontal axis corresponds to the
IAE measure. The residuals of the stationary GPD model reveal stable patterns across
the whole range, which explains its outperformance in most measures. However, focusing
on the range above 1000 fatalities, all the mixture models are more stable than the GPD
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Table 3. Goodness-of-fit measures for the parametric models

Model KS MAE MSE AIC BIC IAE
Weibull 0.377 0.151 0.030 4947.5 4955.5 220.4
GEV 0.111 0.031 0.001 4703.2 4715.1 192.8
GPD 0.074 0.017 0.001 4678.1 4686.1 77.0

Wei-GEV 0.265 0.090 0.014 4857.6 4877.3 31.9
Wei-GPD 0.206 0.067 0.008 4822.5 4842.2 36.5
GEV-GEV 0.149 0.065 0.006 4731.5 4754.5 34.7
GEV-GPD 0.150 0.065 0.006 4731.8 4754.9 28.9

Figure 4. Residual plots of the FN curves: fatalities in log-scale

model. This is why their IAE measures are significantly lower than those of the stationary
models.

4. Risk Assessment of the Disaster Induced Fatality. The GEV-GEV model and
the GEV-GPD model are selected for further risk assessment, because they show prefer-
able IAE measures. The other two mixture models are excluded, since they show worse
performance in almost all measures. The 90% and 95% confidence bands of the FN-
curves are estimated for the GEV-GEV model and the GEV-GPD model, respectively, by
Monte-Carlo simulation, as depicted in Figure 5. They look similar, but the height of the
confidence band for the GEV-GPD model is wider than that of the GEV-GEV model, at
upper tail area. The confidence intervals of the return periods for selected return levels
are summarized in Table 4. The confidence intervals are comparable up to the return
level of 2000, but the GEV-GEV model has much tighter intervals for levels 5000 and
10000. Therefore, the GEV-GEV model is more preferable. As an illustration, we may
say that the return period corresponding to return level 10000 is at least 92.8 (yr) and at
most 780.7 (yr), at a significance level of 5% from the GEV-GEV model.

5. Concluding Remarks. To analyze the risk induced by disaster in the United States,
we applied three stationary models and four mixture models including extreme value
distributions. A new goodness-of-fit criterion IAE was introduced to estimate the mixture
probability in the model. As for the stationary model, the GPD model fitted best in most
criteria. However, in risk analyses, the IAE criterion is more important than other criteria,
because the estimation in upper tail area is frequently required. Considering six goodness-
of-fit criteria, two mixture models were selected for the risk assessment. We constructed
the confidence bands of the FN-curves for the GEV-GEV model and the GEV-GPD
model, respectively. The GEV-GEV model provided more tightened confidence intervals
of return periods corresponding to high return levels.
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Figure 5. Confidence band of FN-curves

Table 4. Estimated confidence intervals of return periods

Conf. Level Return Level 1000 2000 5000 10000

90%
GEV-GEV [8.2, 12.3] [18.5, 38.0] [50.3, 189.0] [102.4, 606.9]

GEV-GPD [7.7, 13.1] [16.0, 47.4] [51.7, 341.2] [137.1, 1291.1]

95%
GEV-GEV [7.9, 12.9] [17.7, 42.2] [46.6, 229.7] [92.8, 780.7]

GEV-GPD [7.4, 14.5] [15.1, 57.2] [46.5, 433.0] [117.6, 1685.9]

The mixed extreme value model will be useful especially when two or more causes affect
the extreme consequences. Further study can be done in two directions. First, the data
classified into natural disaster and human-induced disaster can be analyzed separately, so
that the characteristic of each disaster type may be investigated. Second, piecewise type
models can be developed, and compared to the mixture models.
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