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Abstract. Effectively and efficiently learning an optimal kernel is of great importance
to the success of kernel method. Along with this line of research, many pioneering kernel
learning algorithms have been proposed, developed and combined in many ways. This pa-
per aims to explain the application of Localized Multiple Kernel Learning Support Vector
Machine (LMKL-SVM) to predict the daily stock price of PT.XL Axiata Tbk (EXCL),
PT.Indofood SuksesMakmur Tbk (INDF) and PT.Unilever Indonesia Tbk (UNVR) from
January 2014 to May 2016. It can be concluded that LMKL-SVM has good performance
to predict daily stock price with Mean Absolute Percentage Error (MAPE) produced all
less than 2%.
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1. Introduction. The area of data mining and machine learning deals with the design
of methods that can learn rules from data [1], adapt to changes, and improve perfor-
mance with experience [2]. Also, to be one of the initial dreams of robust, efficient and
applicable methods and reached minimum error, machine learning has become crucial to
solve increasingly complex problems and become more integrated into many applications,
precisely time series [3,4]. Machine learning theory also has close connections to issues
in Economics [5-7]. Machine learning methods can be used in the design of auctions and
other pricing mechanisms with guarantees on their performance [8]. Risk is the result of
probabilistic world where there are no certainties and complexities abound. People use
statistics to mitigate risk in decision making. Reliable knowledge about future can help
investor make the right decision [9] with lower levels of risk [10]. Figure 1 represented
as a statistician we must have abilities to capture data and make visualization to catch
and present the insight with accurately reflecting the numbers and inappropriate visuals
can create misinterpretation and misunderstanding. Using relevant methods with error
minimum it could be the detection of pattern in the data to gain knowledge and make
argument, interpretation and justification [11]. Support vector machines have become
a subject of intensive study [12]. Many authors combine and enhance this method in
time series [13], regression [14], classification and cluster. In this case, we can compute
a string kernel from the sequence data and a Gaussian kernel upon the vectorial data,
and learn the relative significance of the two kernels via the setting of multiple kernel
learning. By multiple kernel learning [15], the relative importance of the kernels can be
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Figure 1. An illustration of stock price analysis using LMKL-SVM

evaluated together with the solution of the Support Vector Regression (SVR) [16]. Re-
cently, multiple kernel learning has been automated for Support Vector Machine (SVM)
classification using Semi Definite Programming (SDP) in optimization theory. However,
the problem of multiple kernel learning on SV regression has not yet been examined. In
this work, we formulate the SV regression problem as SMO [17], Quadratic Programming
(QP) [18], and MOSEK optimization problems [19], so that kernel selection can be per-
formed automatically for SV regression. In this paper we use support vector machines in
the field of time series prediction. Brief introduction to Support Vector Regression (SVR)
and adaptive machine learning algorithms can be viewed as a model for how individuals
can or should adjust to change environment [20]. Moreover, the development of espe-
cially fast-adapting algorithms sheds light on how approximate equilibrium states might
quickly be reached in a system, even when each individual has a large number of different
possible choices. In the other direction, economic issues arise in machine learning when
not only is the computer algorithm adapting to its environment, but it also is affecting its
environment and the behavior of other individuals in it [21]. Connections between these
two areas have become increasingly strong in recent years as both communities aim to
develop tools for modeling. The remainder of the paper is organized as follows. Section
2 provides a review of the material and methods. Section 3 presents dicussion. Finally,
conclusions and future research directions are indicated in Section 4.

2. Methods. Support Vector Regression (SVR) is part of Support Vector Machine
(SVM) for regression case. SVR is also a method that can overcome the overfitting, so it
will produce a good performance. Suppose there are l training data, (xi, yi) i = 1, . . . , l
of the input data x = {x1, . . . ,xl} ⊆ RN and y = {y1, . . . , yl} ⊆ R. SVR is obtained by
the method of regression function as follows:

f(x) = wTφ(x) + b (1)

with w = vector of weight coefficient, φ(x) = feature space, b = bias.
In order to obtain good generalization for the regression function, it can be done by

minimizing the norm of w. Hence there is need for the completion of the following
optimization problem:

min

{
1

2
||w||2

}
(2)

with the provision of:

yi −wTφ(xi)− b ≤ ε (3)

wTφ(xi)− yi + b ≤ ε, i = 1, 2, . . . , l

The loss function shows the relationship between an error and the subject penalties.
Differences loss SVR function will produce different formulations [22]. There are two types
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of loss function used in this study, the ε-insensitive and quadratic loss function. Here is
a mathematical formulation for the ε-insensitive loss function:

L(y, f(x)) =

{
0, for |f(x)− y| < ε
|f(x)− y| − ε, otherwise

(4)

The solution provided is:

max

{
−1

2

l∑
i=1

l∑
j=1

(αi − α∗
i )
(
αj − α∗

j

)
< xi,xj > +

l∑
i=1

αi(yi − ε)− α∗
i (yi + ε)

}
(5)

or can be simplified into:

max

{
−1

2

l∑
i=1

l∑
j=1

βiβj < xi,xj > −
l∑

i=1

βiyi

}
(6)

with the provision of:
−C ≤ βi ≤ C, i = 1, . . . , l (7)

l∑
i=1

βi = 0

where βi = αi − α∗
i , βj = αj − α∗

j , j = 1, 2, . . . , l, and C is a parameter which gives a
tradeoff between model complexity and training error.

While the quadratic loss function is:

L(y, f(x)) = (f(x)− y)2 (8)

Produce a solution:

max

{
−1

2

l∑
i=1

l∑
j=1

(αi − α∗
i )
(
αj − α∗

j

)
< xi,xj > +

l∑
i=1

(αi − α∗
i ) yi

− 1

2C

l∑
i=1

(
α2
i + α∗2

i

)}
(9)

or can be simplified into:

max

{
−1

2

l∑
i=1

l∑
j=1

βiβj < xi,xj > +
l∑

i=1

βiyi −
1

2C

l∑
i=1

β2
i

}
(10)

with the provision of:
l∑

i=1

βi = 0 (11)

One method that can be used to optimize the hyperplane, which is to solve the quadratic
programming with constraints set is Sequential Minimal Optimization (SMO). Sequential
Minimal Optimization (SMO) algorithm is to solve the problem Quadratic Programming
(QP) that arises during training on support vector machine. SMO is a simple algorithm
that can solve the problem QP quickly on SVM. SMO algorithm is to solve the problems
in the SVM-QP without using optimization measures QP numerically [23]. Instead, SMO
chooses to resolve the smallest possible optimization problem involving two elements αi

the need to meet the limiting linear equations. Many decision problems facing individuals
and companies can be cast as an optimization problem, i.e., making an optimal decision
given some constraints specifying the possible decisions. As an example consider the prob-
lem of determining an optimal production plan. This can be formulated as maximizing
a profit function given a set of constraints specifying the possible production plans. The
advantages of MOSEK: (i) solve linear optimization problems using either an interior-
point or a simplex optimizer, (ii) solve conic quadratic and semi definite optimization
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problems, (iii) solve convex quadratic optimization problems, (iv) handle convex quadrat-
ic constraints, (v) solve mixed-integer optimization problems, including linear, convex
quadratic and conic quadratic problems, and (vi) solve linear least squares problems with
linear constraints.

3. Discussion. In this research, we use the SVR with some of kernel functions simul-
taneously as called Multiple Kernel Learning Support Vector Regresion (MKL-SVR).
MKL-SVR is one model that can capture the nonlinear pattern of financial time series
data including data on stock returns. Research on MKL-SVR has developed rapidly. The
model is based on modeling SVR by Cortes and Vapnik [24] using some kernel functions
simultaneously. MKL-SVR modeling is the development of models SVR which involves
some kernel functions, both with the same type or different. Specifically, Gönen and
Alpaydın [25] developed a method Localized Multiple Kernel Learning Support Vector
Regression (LMKL-SVR) as a part of Localized Multiple Kernel Learning Support Vector
Machine (LMKL-SVM) for regression case. Two reasons for using a kernel [26]:
1) Turn a linear learner into a non-linear learner (e.g., RBF, polynomial, and sigmoid)
2) Make non-vectorial data accessible to learner (e.g., string kernels for sequences)
Localized Kernel Regression (LKR) is a multidimensional extension of kernel regression

that uses a matrix of bandwidth parameters optimally selected for each input dimension
instead of a single bandwidth parameter [27]. The problem of automatically selecting a set
of optimal bandwidth parameters is an area of active research and one for which there is no
clear solution. The main advantage of LMKL over canonical multiple kernel machines is
the inherent regularization effect of the gating model [28]. Canonical methods learn sparse
models as a result of regularization on the weight vector but the underlying complexity
of the kernel function is the main factor for determining the model complexity. MKL
can combine only different kernel functions and more complex kernels are favored over
the simpler ones in order to get better performance. However, LMKL can also combine
multiple copies of the same kernel

fR(x) =

p∑
m=1

ηm(x|V )⟨ωm, ϕm(x)⟩+ b (12)

And the optimization of the equation

min
1

2

p∑
m=1

||ωm||22 + C

N∑
t=1

(
ξ+i + ξ−i

)
(13)

w.r.t. ωmξ
+
i , ξ−i , V

s.t. ϵ+ ξ+i ≥ yi − fR(xi) ∀i
ϵ+ ξ−i ≥ fR(xi) ∀i
ξ+i ≥ 0 ∀i; ξ−i ≥ 0 ∀i

where C is a regularization parameter with ξ+i , ξ
−
i is the vector of slack variable and ϵ

is the tube width. Optimization of the slack variable is not convex and nonlinear. By
adding V we will get a convex optimization, and we can get a dual formulation:

max J(V ) =
N∑
t=1

yi
(
α+
i − α−

i

)
− ϵ

N∑
i=1

(
α+
i − α−

i

)
− 1

2

N∑
t=1

N∑
j=1

(
α+
i − α−

i

) (
α+
j − α−

j

)
kη(xi,xj) (14)

w.r.t. α+
j , α−

j
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s.t.
N∑
t=1

(
α+
i − α−

i

)
= 0

C ≥ α+
i ≥ 0 ∀i; and C ≥ α−

i ≥ 0 ∀i
Locally combined kernel function can be defined as

kη(xi,xj) =

p∑
m=1

ηm(xi|V )km(xi,xj)ηm(xj|V ) (15)

in order to get the function as follows

fR(x) =
N∑
t=1

(
α+
i − α−

i

)
kη(xi,xj) + b

In this paper we used the optimization algorithm using MOSEK, SMO, QP. On data
stock prices of PT.EXCL, PT.INDF and PT.UNVR. The data used are the daily stock
price from January 2014 to May 2016. We use locally linear kernel and quadratic kernel.
Then, we used parameter C = 10, 25, 50, 75, 100 also tube width (ϵ) 0.5. We can see the
plot of prediction vs actual in Figure 2 illustrates a good to fit (indicated by actual (−)
and predicted (o)). The size of the error used in this study is the value of Mean Absolute

(a) (b)

(c)

Figure 2. Plot prediction vs actual EXCL (a), INDF (b), UNVR (c)
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Table 1. Simulation using LMKL-SVM

STOCK N C ϵ Optimization MAPE (%) RMSE

EXCL 621

100 0.5 SMO 1.87 112.6482
100* 0.5* QP* 1.87* 112.6312*
75 0.5 SMO 1.88 113.1074
50 0.5 MOSEK 1.89 114.8227
10 0.5 SMO 1.91 113.7411
25 0.5 SMO 1.87 112.7068

INDF 625

100 0.5 SMO 1.28 120.7054
100 0.5 QP 1.28 120.7054
75 0.5 SMO 1.28 120.7344
50* 0.5* MOSEK* 1.28* 120.6186*
10 0.5 SMO 1.45 142.8360
25 0.5 SMO 1.28 120.7866

UNVR 625

100* 0.5* SMO* 1.25* 638.0822*
100 0.5 QP 1.25 648.0822
75 0.5 SMO 1.25 648.9264
50 0.5 MOSEK 1.27 651.7972
10 0.5 SMO 1.87 355504.2368
25 0.5 SMO 1.37 693.7725

*BEST MODEL

Percentage Error (MAPE) and Root of Mean Squared Error (RMSE), so the formula of

MAPE and RMSE can be expressed as: MAPE =
(∑n

i=1
|yi−ŷl|

yi

)
× 100 and RMSE =√∑n

i=1
(yi−ŷl)

2

n
. Result of simulation LMKL-SVM can be seen in Table 1.

According to Table 1, we can see that the regularization parameters, tube width, and
the type of optimization affect the learning process of LMKL-SVM. In this study, we only
use two types of kernel locality, that is linear and quadratic. As a result of the simulation
and analysis using LMKL-SVM, it can be concluded: the best optimization in EXCL
stock price is QP with C = 100 and ϵ = 0.5; then the best optimization in INDF stock
prices is MOSEK with C = 50 and ϵ = 0.5; also, the best optimization in UNVR stock
price is SMO with C = 100, and ϵ = 0.5.

4. Conclusions. Based on the analysis it concludes that LMKL-SVM had a very good
performance in modeling with MAPE less than 2%. In this paper, we managed to make
matlab GUI to simplify calculations and simulations using three different optimizations
and also different kernel. Localized multiple kernel also known as Lazy Learning (LL) is a
non-parametric. In a nutshell, localized multiple kernel SVR methods are more powerful
than parametric methods if the assumptions for the parametric model cannot be met. The
advantage of this method can be used to get a quick prediction with little error and easily
implemented in the era of big data. Future studies will consider the feature selection and
run the ensemble model with metaheuristic optimization.
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