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Abstract. We aim for developing a system for supporting swimmer with an inertial
sensor. It is required to develop a method to detect swimming stroke starting timing from
the single inertial sensor data attached to swimmer’s back waist (3-axis acceleration and
gyro data). In this paper, we propose a detection method of swimming stroke starting
timing from the time and frequency domain of 3-axis acceleration and gyro data by using
the deep learning and peak detection. To learn the deep learning parameter, we carried
out an experiment. The number of subjects is six and they swim butterfly. We assigned
four persons as the training dataset and two person as the test dataset. As a result, our
method achieves the high quality detection, i.e., the precision and recall are 0.855 and
0.904, respectively. Therefore, we confirm that there is a possibility that our method can
use our system for supporting swimmer with an inertial sensor. Moreover, our method
can be used to an estimation of starting timing of other human motions.
Keywords: Inertial sensor, Human motion, Deep learning, Swimming motion

1. Introduction. Because it is important to promote swimming performance enhance-
ment in Japan, we aim to develop a swimming performance analysis system [1].

In this system, single inertial sensor is attached to the swimmer’s back waist. The
system has a function that can understand respective stroke’s performance from the sensor
data (3-axis acceleration and gyro data). We have to develop an algorithm to detect the
starting and ending timing of respective stroke to achieve it. Because the swimming stroke
motion is cyclic, the ending timing of n is the starting timing of n+1 times stroke. Thus,
we develop an algorithm of the start timing detection of respective stroke from the sensor
data.

Many researchers performed to develop the swimming styles classification (back stroke,
front stroke, breast stroke and butterfly) [2, 3, 4, 5, 6]. Moreover, Davey et al. developed
an algorithm to count the number of strokes [7]. Jensen et al. and Kobayashi et al.
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developed a classification system that can detect the turn motion [4, 8]. Their researches
have high quality. However, there are few researches of the swimming stroke by the
sensor data. It is important to develop not only the counting strokes and swimming style
classification system but also the accurate stroke performance evaluation method.
Recently, the deep learning technique is used to the research of various fields to achieve

the high quality. Thus, many researchers introduce the human motions analysis based
on the deep learning and the inertial sensor data. For example, Ordones and Daniel [9],
Alsheikh et al. [10] and Ravi et al. [11] developed the human activities recognition system
by using the convolutional neural network (CNN) and deep Boltzmann machine. Their
researches’ target is the basic human motion (e.g., walking, running). We focus on the
application of the deep learning to the sports motion. In this paper, we focus on the
swimming stroke and our target swimming style is butterfly, as the first step. Especially,
in order to use our system for supporting swimmer with an inertial sensor, we propose
a detection method of swimming stroke starting timing by using the deep learning and
peak detection. There are researches of rough detection of swimming motions and styles
by using inertial sensors and machine learning [3, 4, 5, 6, 8]. In contrast, our method aims
for the detection of exact timing of swimming motion.
The paper is organized as follows. In Section 2, we give an overview of a detection

method of swimming stroke starting timing which we use in this paper. In Section 3, we
overview the experiment to verify the reliability of our detection method. Moreover, its
result and discussion are presented. Section 4 is devoted to a summary.

2. Outline of a Detection Method. In this subsection, we briefly describe our pro-
posed detection method of swimming stroke starting timing from the time and frequency
domain of 3-axis acceleration and gyro data by using the deep learning and peak detection.

2.1. Inertial sensor and its attached location. We use a waterproofed inertial sensor
shown in the right side of Figure 1: size: 67mm × 26mm × 8mm, weight: 20g, acceler-
ation range: ±5G, gyro range: ±1500dps and sampling frequency: 100Hz developed by
SPORTS SENSING Co., LTD [1, 6, 12]. Attached location of the sensor is swimmer’s
back waist. We used a double sided tape to attach an inertial sensor. Setting of the
sensor position and the axis with the positive direction of arrow direction of acceleration
and angular velocity are shown in Figure 1. Here, Xacc denotes X-axis acceleration, Xang

denotes X-axis gyro element and Y and Z axes are the same. From the measured data
of inertial sensor, our proposed method detects the starting timing of respective stroke.
In the remaining of this section, we explain the algorithm of our detection method.

Figure 1. Attached location of single inertial sensor
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2.2. Construction of a CNN model. Our algorithm extracts sub data from the sensor
data. The left side of Figure 2 shows an example of our input data into the convolutional
neural network (CNN). The line size is the “window length”. Its length is the half value of
average time of the strokes of butterfly. Because we know the average timem is 1.06sec [6],
we set 0.53sec as its window length. Because the sampling frequency is 100Hz, 0.53sec
means 53 size sequence data. The row size is twelve: the time and frequency domain data
of 6 axis (X, Y, Z of acceleration and gyro data). The frequency domain is calculated by
fast Fourier transform (FFT). As the result, 53×12 size data is inputted into CNN. Note
that the 53rd line means the point of the starting timing. Therefore, the CNN detects
the starting timing by using the sensor data of second half of stroke.

We describe the construction of a CNN model. Our model consists of two convolutional
layers and three fully connected layers shown in the middle of Figure 2. The first and
second convolutional layer are 3 × 1 filter and the ReLu function. The inputted data’s
size are 51×12 and 49×12 by the first and second convolutional layers, respectively. The
neuron size of the first fully connected layer is 588 (49× 12) and the activation function
is the ReLu function. The neuron size of the second fully connected layer is 10 and the
activation function is the ReLu function. The neuron size of the final fully connected layer
is 3 and the activation function is the Softmax function. This is detection layers: the first
neuron, second and third neuron mean “starting timing of stroke” (class c1), “stroke (not
starting timing)” (class c2) and “turn or not swimming” class (class c3), respectively (the
right side of Figure 2). If the first neuron’s value is the maximum, it means this motion is
the starting timing of the stroke. If the second neuron’s value is the maximum, it means
this motion is the stroke that is not starting timing. If the third neuron’s value is the
maximum, it means this motion is not stroke (turn, walking, jumping and so on).

Figure 2. CNN model to detect the starting time of respective swimming
stroke from single inertial sensor data

The above procedures are performed every 0.01sec by sliding window method [13, 14].

2.3. Peak detection. There is a possibility of the stroke start timing, if the output value
of the first neuron is maximum. The sensor data is inputted into the CNN every 0.01sec
because the sampling frequency is 100Hz. Therefore, the output values of the first neuron
are formed of the time sequence data. To detect the starting timing of respective stroke,
we adopt a peak detection to the output values of the first neuron. We defined that the
peak timings are the respective stroke starting timing. The peak condition is over 0.33 of
the output value of the first neuron because the number of output neuron is three and the
summation value of the all output neurons is one (the mean value of each output neuron
is 0.33).

According to Omae et al. [6], the standard deviation of the butterfly’s stroke time s is
0.04sec. Thus, we consider that n+1 times starting timing of stroke does not occur prior
to m− 3s from n times stroke starting timing (m− 3s = 1.06− 3× 0.04 = 0.94sec).

By their conditions, we develop the algorithm to detect the starting timing of the
butterfly stroke.
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3. Experiment. To verify the reliability of our algorithm, we carried out an experiment.
In this section, the outline of the experiment, the result and discussion are presented.

3.1. Outline. The subjects are six university students who belong to swimming clubs in
university and have the experience of the butterfly. Single water proof inertial sensor is
attached to their back waist. The length of the pool we use is 25m and the subjects swim
one lap. In other words, their swimming distance is 50m. We record the scene of the
experiment by video camera (30fps) and add the class labels c1, c2 and c3, respectively.
Thus, the dataset consists of the pair of the inertial sensor data and the class label. We
search for the video frames of human motions defined as the class labels in all video frames
for all subjects. Then, we give the class labels to time sequence inertial sensor data.
Next, we introduce the CNN’s learning condition. The number of learning is 2 ×

104 times, the optimization algorithm is the stochastic gradient descent, learning rate
is 0.01. We split the dataset consisting of the sensor data of six subjects collected by
the experiment for the parameter learning and model validation. The four subjects are
assigned as the training dataset and the two subjects are assigned as the test dataset.
The training dataset is used for the CNN parameter learning and the test dataset is used
for the evaluation of our method.

3.2. Result and discussion. A result of the output by our detection method of swim-
ming stroke starting timing is shown in Figure 3. The horizontal axis means time sequence
and the vertical axis means the output values of the first neuron. The output values of
the first neuron becomes high value when the timing is respective starting stroke. The

Figure 3. Time sequence of the output values of the first neuron, detection
result and ground truth
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filled triangles mean the peak detection results, i.e., the estimated stroke starting timings.
The non-filled triangles mean the ground truth of the real stroke starting timings.

Until ∼ 40 seconds, it means the time before swimming (walking, jumping, motion of
going into the pool and so on). Therefore, the neuron values are almost zero. From 40
to 53 seconds, it means the first half of swimming (25m). Therefore, the neuron values
have some responses. From 53 to 57 seconds, it means the time during the turn motion.
Therefore, the neuron values are almost zero. From 57 to 69 seconds, it means the second
half of swimming (25m). Therefore, the neuron values also have some responses. After
69 seconds, it means the time after swimming. Therefore, the neuron values are almost
zero. From the filled and non-filled triangles, we can confirm that our method can detect
stroke starting timing.

Next, we carried out the reliability survey of our method. This result is shown in
Table 1. The result is verified by the test dataset that is not used to the parameter
learning and consists of two subjects. a1 means the number of correct estimation timing,
a2 means the number of not correct estimation timing, respectively. Moreover, b1 is the
number of succeeded detections of real timing and b2 is the umber of failed detections of
real timing, respectively. Specifically, if the differences both real timing and estimated
timing is within ±0.30sec, we considered that it is a correct answer.

Table 1. Evaluation of the reliability by using test dataset

Item Value
a1: Number of correct estimation timing 47
a2: Number of not correct estimation timing 8
b1: Number of succeeded detection of real timing 47
b2: Number of failed detection of real timing 5
P : Precision: 0.855
R: Recall: 0.904

We also calculate the precision P and recall R. These are defined by:

P = a1/(a1 + a2), (1)

R = b1/(b1 + b2). (2)

The range of them is from zero to one and the high value means good method. From
Table 1, the precision achieves 0.855 and recall achieves 0.904. There are a few miss
detections. However, it shows our detection quality achieves good state. However, it is
important to improve the reliability for users.

Moreover, we carry out the error evaluation survey to the strokes succeeded detection.
This result is shown in Table 2. The mean value of the error achieves 0.169sec and its
standard deviation achieves 0.037sec. It means our method achieved the high quality.

From these results, we confirm that there is a possibility that our method can use our
system for supporting swimmer with an inertial sensor.

Table 2. Evaluation of the error by using the test dataset

Item Value [sec]
Absolute mean of the error 0.169
Std value of the error 0.037
Minimum value of the error 0.050
Maximum value of the error 0.260
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4. Summary. In this paper, we described a method to detect stroke starting timing by
deep learning and peak detection. First, we extracted the acceleration and gyro signals
by the sliding window method [13]. After that, the time and frequency domain by FFT
were calculated. These data were inputted into the CNN every 0.01sec. We got the time
sequence output of the first neuron for the stroke starting timing class c1 of CNN and
applied the peak detection to this output. As the result of the reliability survey by using
the test dataset consisting of two subjects, there were a few miss detections. However,
our method achieved the high quality detection, i.e., the precision and recall achieve 0.855
and 0.904, respectively. Thus, we confirmed that there was a possibility that our method
could use our system for supporting swimmer with an inertial sensor.
We describe the future works: the number of subjects of the experiment that we carried

out is six and very small. Therefore, we aim to increase the subjects to expand the
training and test datasets to improve the detection quality. And, we try other swimming
styles except butterfly (such as front crawl, backstroke and breast stroke). Moreover,
we implement our algorithm to the swimming coaching system. In addition, we defined
the correct detection as ±0.30sec, subjectively. However, it is desirable to define the
value by collecting opinions from the swimmers and coaches. This task is also one of the
future works. Finally, we aim to apply our developed system to the swimming training
environment.
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