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Abstract. With the adoption of damage tolerance design principle, the health monitor-
ing system has become an integral part of the engineering structure in operation. For the
system to work, damage indicator that describes the structural integrity level should be
established and monitored. Damage indicator is usually derived from structural respons-
es. Many quantities have been proposed for damage indicator. Some popular damage
indicators are natural frequency, mode shape, curvature, strain energy, and t-, F -, and
z-statistics. In this paper, we propose a new damage indicator derived from the theory
of the strength of materials. We evaluate the proposal for a case involving damage on a
simply-supported beam. The required data are established numerically by the finite ele-
ment method for structure in healthy and damaged conditions. The results suggest that
the current proposal is more sensitive to damage than the natural frequency.
Keywords: Structural health monitoring, Damage indicator, Natural frequency, Finite
element method

1. Introduction. During the last thirty years, the number of research papers about
Structural Health Monitoring (SHM) increases tremendously. Those papers reported the
applications of SHM on various engineering structures, such as aircraft [1–4] and bridge
[5–11]. Meanwhile, the number of articles about machine learning also grows at a massive
rate. Machine learning has been used to solve various engineering problems, including
for SHM [2, 3, 12–19]. A few journals such as Mechanical Systems and Signal Processing
and Journal of Sound and Vibration put forward the remarks regarding the trend. They
consider that applying machine learning only to solving mechanical system problems
without applying sound engineering principles is insufficient to justify publication.

In the field of SHM, one major issue is finding indicators that are sensitive to damages.
They should easily be measured. So far, many indicators have been proposed. Two
popular ones are natural frequency and mode shape [9, 20–25]. The others are vibration
curvature [26–28], elastic energy [29], and the power spectral density [30].

Those indicators are useful despite their limitations. Natural frequency and mode
shape are good indicators. Natural frequency is global as damage at any point on a
structure affects the indicator. However, when damage happens, natural frequency often
only changes slightly to be detectable. Mode shape is also global, but the measurement
at several points is required to establish the indicator. Vibration curvature and elastic
energy possess similar characteristics. The power spectral density can hardly differentiate
the healthy condition from the damaged condition when the damage level is small as
pointed out by [30].

A new and better indicator is required. It should be more sensitive to damage, require
a minimum amount of data, and be easily measured. This paper addresses the issue. It
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proposes an indicator developed based on our understanding of the theory regarding the
strength of materials. An initial assessment of the method applied to a spring-mass system
is presented in [31]. In the previous work, the approach was evaluated on an idealized
system where engineering structure was regarded as a system of the concentrated massed
connected by elastic springs. We understand that engineering structures are far more
complex. Despite the fact, engineers often consider a complex engineering structure as
constructed from four basic structures, namely, bar, beam, membrane, and shell. In this
work, we evaluate our proposal on a beam structure, a widely used basic structure.
We structure the paper as the following. Section 2, describes the derivation of the

damage indicator and the method to generate sample data where the indicator is empir-
ically evaluated. Section 3, presents the results of the computed damage indicator. In
this section, we also compare with the results of natural frequency method. Finally, in
Section 4, we conclude the most essential aspects contributed by this research.

2. Research Method. This paper proposes a damage indicator derived from the theory
of the strength of materials. Notably, it focuses on the Euler-Bernoulli beam theory.
Thus, the derived indicator is useful for the SHM of beam-like structures.
The Euler-Bernoulli beam theory is accurate when the beam deflection is small such

that the beam cross-section remains flat upon deformation. Also, the section is still
perpendicular to the beam neutral plane.
With those assumptions, the theory links the applied distributed loads onto the beam

q(x) to deformation w(t, x) with the second-order differential equation of [32]

EI
∂4w

∂x4
= −ρ

∂2w

∂t2
+ q(x). (1)

The symbol E denotes the beam elastic modulus, I denotes the second moment of area
of the beam cross-section, and ρ is the material density.
The dynamic equilibrium equation is applicable for any point at the beam at any time.

We hypothesize that a deviation from the condition may signify a change in either the
material properties or the beam geometry or both. Corrosion or crack may alter beam
cross-section. Thus, the change may reflect the deterioration in material integrity.
In this work, we use the Euler-Bernoully theory not to predict a beam deformation,

nor to predict the exerted force, but to estimate the beam integrity. For the purpose, we
propose:

d(x, t) =

∣∣∣∣EI
∂4w

∂x4
+ ρ

∂2w

∂t2
− q(x)

∣∣∣∣ . (2)

We hypothesize when the beam is intact, and E, I, and ρ are assigned with values on the
intact condition, the damage indicator d(t, x) should be zero or very small. The indicator
may shift from zero when the beam contains damages. We assume that damages alter
the beam deformation w(t, x).
For SHM purpose, we have the freedom to choose the observation or measurement

point. We may select the point where the external load is absent. Thus, it simplifies the
computation of the damage indicator.
In this paper, we evaluate the above proposed indicator with a case of damage on a

simply-supported beam. The beam has 300-mm length, 20-mm width, and 20-mm height.
The beam and its discretization are shown in Figure 1. It is made of steel material with
the elastic modulus of 207 GPa, the Poisson ratio of 0.3, and the material density of
8050 × 10−9 kg/mm3. The beam is subjected to a harmonic load f(t) = 100 · sin(2πfpt)
at the location x = 100 mm with fp = 2 kHz.
We compute the beam displacement using Ansys, a commercial finite element package.

For the purpose, we discretize the beam with 100 beam elements. Each is 3-mm length.
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Figure 1. The indicator d computed at the observation points located
at 51 mm, 54 mm, 57 mm, 60 mm, 63 mm, and 66 mm for the healthy
and damaged conditions. The damaged element, marked by ‘E20’, spans
between x = 57 mm and x = 60 mm. The duration of analysis is 10 ms.

We have to establish w(t, x) for intact condition as well as damaged condition. For the
latter, we assume the damage exists only in Element 20, marked as ‘E20’ in Figure 1. The
element connects the nodes located at x-axis of 57 mm and 60 mm. We also assume the
damage reduces the beam elastic modulus as much as five percent.

To compute the damage index d(t, x) by Equation (2), we should establish the terms:
∂4w/∂x4 and ∂2w/∂t2. In the following, we discuss our approach to establish the two
terms.

We compute the term ∂4w/∂x4 by the finite difference approximation of:

∂4w(x, t)

∂x4
≈

w(x− 2h, t)− 4w(x− h, t) + 6w(x, t)− 4w(x+ h, t) + w(x+ 2h, t)

h4
, (3)

where h is taken as the element length of 3 mm.
As for the term ∂2w/∂t2, we firstly fit the displacement time-history data with a cubic

spline function and then take the first and the second derivatives of the function to provide
the acceleration. The derivation of the cubic spline function is as the following.

We consider n data points: [(t1, s(t1)), (t2, s(t2)), . . . , (tn, s(tn))]. Strictly, we have the
condition: t1 < t2 < · · · < tn. We fit the segment in [tj, tj+1] with a third order polynomial
where j is an index from 1 up to n. The polynomial can be written in the Newton form
as:

pj(t) = c1,j + c2,j(t− tj) + c3,j(t− tj)
2 + c4,j(t− tj)

3. (4)

To complete the polynomial, we should determine the values of the four coefficients: c1,j,
c2,j, c3,j, and c4,j. They can be computed by:

c1,j = s(tj), (5)

c2,j = mj, (6)

c3,j =
[tj, tj+1]s−mj

∆tj
− c4,j∆tj and (7)

c4,j =
mj +mj+1 − 2[tj, tj+1]s

(∆tj)2
. (8)
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The term mj denotes the gradient at point tj. The terms [ti, . . . , ti+k]s denotes the kth
divided difference of s at the points t1, . . . , ti+k. It can be computed by:

[ti, . . . , ti+r]s =
[ti+1, . . . , ti+r]s− [ti, . . . , ti+r−1]s

ti+1 − ti
.

For given the slopes m1 at the first point t1 and mn at the last point tn, we can compute
the gradients at the points t2, t3, . . . , tn−1 by solving a set of linear equations:

∆tj ·mj−1+2(∆tj−1+∆tj) ·mj +∆tj−1 ·mj+1 = 3 (∆tj[tj−1, tj]s+∆tj−1[tj, tj+1]s) , (9)

leading to the gradients m2,m3, . . . ,mn−1. With these results, we establish the cubic
splines for interpolation of the data w(x, t) across the time domain.

3. Results and Discussion. In this paper, we propose the formula in Equation (2)
for SHM. Our early work suggested the formula was able to detect damage when the
measurement was performed near the location of damage [31]. It was evaluated on simple
cases involving lumped-mass systems. In this paper, we evaluate the theory for detecting
the damages in a beam.
For the reason, we focus on the six measurement points depicted in Figure 1. The

points position around the damage. The damage spans the segment between x = 57 mm
and x = 60 mm. The six points are located at x = 51 mm, 54 mm, . . ., 66 mm. Thus,
two points are at the ends of the damaged segment, two points on the left of the damaged
element, and two points on the right.
We structure this section as follows. First, we present the displacement at those ob-

servation points for healthy and damaged conditions. Second, we present the natural
frequency for both conditions. Third, we show the proposed damage indicator computed
on those observation points. Finally, we present the proposed indicator in the frequency
domain.
For the first result, the beam displacements in the lateral direction at the six mea-

surement points are shown in Figure 2 for healthy and damaged conditions. The profiles
look rather similar because the six measurement points are separated by the small dis-
tance of 3 mm only. It is interesting to witness that the profiles for healthy and damaged
conditions look rather identical. The displacements are practically not affected by the
five-percent stiffness degradation on Element 20. The fact suggests the quantity is not
suitable for damage detection.
For the second result, we focus on the natural frequency. The quantity is computed by

solving det (K− ω2M) = 0, where K is the stiffness matrix, M is the mass matrix, and
ω is the natural frequency. The computed natural frequency is precise. The approach
avoids errors that may occur when the quantity is reduced from the frequency analysis.
The computed natural frequency is shown in Table 1. Only the first nine modes are

provided. The table presents the quantity for healthy and damaged conditions. On the
last column, the change of the frequency due to the damage is provided. The results
suggest that the change of the natural frequency is too small. The damage does not lead
to a significant change in the natural frequency.
The natural frequency is well known to be sensitive to damage. Theoretically, damage

at any point at the beam should affect the quantity. With this nature, the indicator is
said to be global in detecting damage. However, for the present case, it becomes apparent
that sufficiently large damage is required to be detectable by the approach. As the natural
frequency is proportional to the square root of the stiffness, a 75-percent reduction in the
stiffness only changes the natural frequency by half.
For the third result, we present the current proposal of the damage indicator. We

compute the indicator at the six observation points. The results are shown in Figure 1.
We observe the indicator closely and obtain the following conclusions. The values of the
indicator computed at the six observation points are always zero for the healthy condition.
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(a) x = 51 mm (b) x = 54 mm

(c) x = 57 mm (d) x = 60 mm

(e) x = 63 mm (f) x = 66 mm

Figure 2. The lateral displacements at the six observation points for the
healthy and damaged conditions

Table 1. The first nine natural frequencies of the beam on the healthy
and damaged conditions

Mode No.
Natural Frequency (kHz)

Healthy Condition Damaged Condition Change (%)
1 0.507 0.507 0.037
2 1.987 1.985 0.095
3 4.226 4.222 0.101
4 4.327 4.323 0.095
5 4.849 4.847 0.037
6 7.382 7.379 0.048
7 9.699 9.690 0.098
8 11.003 11.000 0.022
9 12.678 12.673 0.041
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As for the damaged condition, the indicator computed at x = 60 mm is the most sensitive
to the damage. The point is on the right end of the damaged segment. The sensitivity to
the damage quickly drops by increasing the distance from the damaged element.
Finally, we discuss the damage indicator in the frequency domain. It is shown in

Figure 3. Comparing with those in the time domain reveals some interesting differences
and similarities. For the observation points at x = 51 mm and x = 66 mm, the indicator
established in the time and frequency domains is not able to detect the damage. However,
at the other measurement points where the effect of damage is detectable, the frequency
domain representation is more distinctive and consistent. The indicator for the case of
damage is clearly separated from the case of the healthy condition.

(a) x = 51 mm (b) x = 54 mm

(c) x = 57 mm (d) x = 60 mm

(e) x = 63 mm (f) x = 66 mm

Figure 3. The values of the damage indicator computed in the frequency domain

4. Conclusion. In this paper, we propose a damage indicator for assessing the change
in structural condition. In general, the indicator is derived from our understanding of
mechanics of materials and theory of elasticity. With those theories in mind, we under-
stand and can predict the dynamical behavior of engineering structure upon receiving



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.11, NO.3, 2020 219

external loads. The deviation of responses from our prediction may signify alteration
of the structural integrity. We evaluate our theory with data collected from a vibration
analysis of a simply supported beam. The vibration is simulated numerically by the fi-
nite element method. To simplify the issue, we alter the elastic modulus of a presumed
damaged element by a small amount. We analyze the structural responses on the healthy
and damaged conditions. Then, we compute the proposed damage indicator. We witness
the sensitivity of the indicator to the altered element. We also evaluate the change of the
natural frequencies due to the damaged element and witness that the change is too small
for the frequencies to be affected. With that example, we conclude that the proposed
indicator can potentially detect structural changes better than the traditional method
based on the natural frequency.

So far, we have evaluated our damage indicator by using an idealized structure [31] and
a simply-supported beam with a simple damage model, the current paper. Many studies
are still required to evaluate the effectiveness of the method, including for the cases of
breathing crack and delamination in composite structures. We will leave those issues for
future works.
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