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Abstract. In view of the fact that the market demand for remanufactured products does
not obey the probability distribution and does not fluctuate within a certain interval, this
paper uses the affine-adjustable robust method to establish a more realistic multi-cycle
robust optimization model for retailers of remanufactured products, which effectively cir-
cumvents the impact of uncertainty requirements on remanufactured product inventory.
An example study was carried out in the ROME environment using Matlab. The results
show that the demand information of the first cycle has a great impact on the optimal
ordering strategy in each following cycle, most significantly, the second cycle and the last
two.
Keywords: Inventory management, Robust optimization, Affine scalable robust method,
Retailer

1. Introduction. As the problem of resource shortage and pollution goes on, the re-
cycling of used products has received more and more attention. However, the recycling
industry is still in its infancy in China. Consumers’ understanding and recognition of
recycled products is still fairly low. The market demand for recycled products is very
unstable, which makes it difficult for recycled product retailers to effectively determine
their inventory levels [1]. In addition, there are uncertainties in the timing, quality and
quantity of waste product recycling [2], which makes recycling product inventory man-
agement more complicated. To solve problem of the uncertain market demand for current
recycled products, this paper describes using robust optimization method to establish an
inventory optimization model for retailers of recycled products. The robust optimization
inventory model not only solves the problems of the over-reliance on prior knowledge and
statistics in the past optimization model, but it also solves all the uncertain parameters.
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The research on the use of robust optimization methods to solve inventory problems
mainly focuses on two aspects.
The first aspect is the analysis of demand uncertainty issues. In [3], use robust models

to solve the complex question of stable stockings and the network/inventory management
problem of pulp production. In [4], the robust optimization generates scenario-based plans
by a minimax optimization method to find optimal scenario for the trade-off between tar-
get coverage robustness and organ-at-risk (OAR) sparing. In [5], consider a generic class
of adaptive optimization problems under uncertainty, and develop a data-driven paradigm
of adaptive probabilistic robust optimization (APRO) in a robust and computationally
tractable manner. In [6], the general scalar robust optimization problems under the strict-
ly robust counterpart are considered, among which, the uncertainties are included in the
objective as well as the constraints. The second aspect is the study of the uncertainty of
demand. In [7], address the robust counterpart of a classical single machine scheduling
problem by considering a budgeted uncertainty and an ellipsoidal uncertainty. In [8], it
introduces a new uncertainty class which is a combination of budgeting uncertainty and
ellipsoidal uncertainty. In [9], study the performance of affine policies for two-stage ad-
justable robust optimization problem with fixed recourse and uncertain right-hand side
belonging to a budgeted uncertainty set. In [14], use the affine-adjustable robust method
(AARM) to effectively control inventory under the uncertainty of demand. In [11], estab-
lish a multi-cycle robust optimization model based on the influencing factors of demand.
This model emphasized the requirement to set the next cycle of demand as a function of
the previous cycles to solve the inventory problem of the enterprise. In [12], use the affine
robust optimization method to solve the inventory coordination and return problems of
multi-cycle and multi-products.
The list above provides a lot of decision-making basis for solving the inventory opti-

mization problem, but it also has certain limitations. Based on the limitations, there are
two innovations being as follows: one is that it has broken through the disadvantages of
too many uncertain parameters in the past optimization models, relying on prior knowl-
edge, and assuming that the demand obeys the probability distribution; the other one is
that the model could be used to all uncertain parameters.

2. Model.

2.1. Description of the problem. Unlike the supply and sale process of a new product,
retailers of remanufactured products face more uncertainties. The change in the quality
and quantity of waste products happens, resulting in the final delivery time of remanufac-
tured products is often unstable. At the same time, market demand for remanufactured
products is often in an irregular state due to seasonality, government policies, and cus-
tomer perceptions of remanufactured products. Therefore, retailers need to consider the
above-mentioned factors to determine their reasonable inventory levels to achieve the goal
of minimizing inventory management costs and maximizing customer satisfaction.

2.2. Model parameters. J : the types of products; ptj: the fee to buy unit product of j
in period t, j = 1, 2, . . . , J ; qtj: the order quantity of product j in period t, j = 1, 2, . . . , J ;
dtj: the demand of product j in period t, j = 1, 2, . . . , J ; ht

j: the fee of lost-sales of
unit product of j in period t, j = 1, 2, . . . , J ; ctj: storage cost of unit product of j in
period t, j = 1, 2, . . . , J ; I tj : the inventory of product of j at the beginning of period t,
j = 1, 2, . . . , J ; I t(j): the total inventory of product of j at the beginning of period t,
j = 1, 2, . . . , J ; sj: the maximum inventory of product of j; qtj

(
dt−1
j

)
: the order of product

j in period t, according to dt−1
j .
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2.3. Model establishment. The inventory cost in period t, includes ordering cost, in-
ventory cost, lost-sale cost. Ordering cost:

∑J
j=1 p

t
jq

t
j; Inventory cost:

∑J
j=1 c

t
j max

(
I tj + qtj

−dtj, 0
)
; Lost-sale cost:

∑J
j=1 h

t
j max

(
dtj − I tj − qtj, 0

)
. The inventory in period t + 1:

I t+1
j = I tj + qtj − dtj, I

t+1 =
∑J

j=1 I
t+1
j .

Let [x, y]+ = max{x, y, 0}, and then the inventory cost and the lost-sale cost in period

t can be expressed as:
∑J

j=1 c
t
j

[
I tj + qtj − dtj, 0

]+
,
∑J

j=1 h
t
j

[
dtj − I tj − qtj, 0

]+
. When the

demand is stochastic, the optimal model for minimized inventory cost can be expressed
as:

min
qtj

E

[
T∑
t=1

J∑
j=1

ptjq
t
j +

(
ctjI

t+1
j ,−ht

jI
t+1
j

)+]

s.t. I t+1
j = I tj + qtj − dtj, 1 ≤ t ≤ T, j = 1, 2, . . . , J

I tj + qtj − dtj ≤ sj, 1 ≤ t ≤ T, j = 1, 2, . . . , J

qtj
(
dt−1
j

)
≥ 0, I1j = 0, 1 ≤ t ≤ T, j = 1, 2, . . . , J

(1)

The objective function is: minimize the subscription fee plus storage fee or out of stock
cost; the first constraint is the relationship between the inventory of the t+ 1 period and
the previous t period, the second constraint is the maximum inventory capacity limit, and
the third constraint is that the order quantity is greater than zero.

2.4. Factor-based inventory demand model. In the factor-based inventory demand
model, the demand for product j (j ∈ J) is an affine function of uncertain factor zjk,
(k = 1, 2, . . . , Kt, 1 ≤ K1 ≤ K2 ≤ · · · ≤ KT ). As the demand dtj occurs, the uncertain
factor zjk appears. At the beginning of period t, the factor zjk, (k = 1, 2, . . . , Kt−1)
appears. Then at the end of period t, the factor zjk (k = Kt−1 + 1, Kt−1 + 2, . . . , Kt)
appears. Let Kt = {1, 2, . . . , Kt}, K0

t = {0, 1, 2, . . . , Kt}, zj = (zj1, zj2, . . . , zjKt), zj =
(zj1, zj2, . . . , zjKt), and then one could get the demand dtj for product j in period t is an

affine function of zj: d
t
j (zj

t) = dt,0j +
∑

k∈Kt
dt,kj zjk, 1 ≤ t ≤ T .

Hypothesis 2.1. The uncertain factor z has an un-known probability distribution, and
z ∈ w (support set w is a full-dimensional convex polyhedron containing uncertainties).
Let the uncertain factor z’s mean support set be w. As the retailer aims to minimize the
worst-case inventory management cost in the factor-based demand model, one gets the
robust optimization model is:

minmax
P∈U

EP

[
T∑
t=1

J∑
j=1

ptjq
t
j

(
zt−1

)
+ xt

j

(
zt
)]

s.t. ctjI
t+1
j

(
zt
)
≤ xt

j

(
zt
)
, −ht

jI
t+1
j

(
zt
)
≤ xt

j

(
zt
)

1 ≤ t ≤ T, j = 1, 2, . . . , J

I t+1
j

(
zt+1
j

)
= I tj

(
zt
)
+ qtj

(
zt
)
− dtj

(
zt
)

1 ≤ t ≤ T, j = 1, 2, . . . , J

I tj + qtj − dtj ≤ sj 1 ≤ t ≤ T, j = 1, 2, . . . , J

qtj (z
t−1) ≥ 0, I1j

(
z0
)
= 0, I tj , q

t
j ∈ FKt−1 1 ≤ t ≤ T, j = 1, 2, . . . , J

(2)

The objective function of the model is: minimize the subscription cost + storage fee
or out-of-stock cost; the first constraint is the equilibrium condition of the inventory; the
second constraint is the capacity limitation condition of the inventory; the third constraint
is the capacity constraint of the inventory; the fourth constraint is the initial conditions
of the inventory.
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3. Model Transformation. Since the model (2) is a nonlinear problem and is not easy
to solve, it is transformed into a linear optimization problem that is easy to solve. Under
Hypothesis 2.1, the objective function can be transformed into:

max
P∈U

EP

[
T∑
t=1

J∑
j=1

ptjq
t
j

(
zt−1

)
+ xt

j

(
zt
)]

= max
z∈w

T∑
t=1

J∑
j=1

[
ptjq

t
j

(
zt−1

)
+ xt

j

(
zt
)]

Equation (2) could be expressed as:

min max
z∈w

T∑
t=1

J∑
j=1

[
ptjq

t
j

(
zt−1

)
+ xt

j

(
zt
)]

s.t. ctjI
t+1
j (zt) ≤ xt

j (z
t) , −ht

jI
t+1
j (zt) ≤ xt

j (z
t) 1 ≤ t ≤ T, j = 1, 2, . . . , J

I t+1
j (zt+1) = I tj (z

t) + qtj (z
t)− dtj (z

t) 1 ≤ t ≤ T, j = 1, 2, . . . , J

I tj + qtj − dtj ≤ sj 1 ≤ t ≤ T, j = 1, 2, . . . , J

qtj (z
t−1) ≥ 0, I1j (z

0) = 0, I tj , q
t
j ∈ FKt−1 1 ≤ t ≤ T, j = 1, 2, . . . , J

(3)

where S =
{
z ∈ RKT |∃u ∈ z ∈ RNb : Az +Bu ≤ q

}
, w =

{
z ∈ RKT : z ∈ G, z ∈ S

}
.

Model (3) is a robust optimization problem that is difficult to solve and needs to be
transformed into a linear programming problem that is easy to solve. For the transfor-
mation model (3), the duality theory, Lemma 3.1, is introduced.

Lemma 3.1. The “Necessary and Sufficient Condition” of maxz∈w zTy ≤ r is ∃β ∈ RN ,
αt ∈ RM (t ∈ T ), satisfying:

∑T
t=1 (d

t,0)
′
αt+β′q ≤ r,

∑T
t=1 (−Dt)αt+A′β = y, B′β = 0,

β ≥ 0, αt ≥ 0, t ∈ T .

In order to transform the nonlinear robust optimization problem into a linear program-
ming problem that is easy to solve, Theorem 3.1 is proposed in this paper.

Theorem 3.1. Under the linear ordering strategy, the optimal problem minϕ has a solu-
tion and the problem equals the linear programing, which is easy to solve.
minϕ

s.t.
T∑

t=1

(
dt,0

)′
αt + β′q ≤ ϕ− φ0,

T∑
t=1

(
−Dt

)
αt +A′β = φ, B′β = 0 β ≥ 0, αt ≥ 0, t ∈ T

φk =
T∑

t=1

∑
j∈J

(
qt,kj + xt,k

j

)
, mt,k

j = ctjI
t+1,k
j − xt,k

j k ∈ KT , t ∈ T

mt,0
j +

Kt∑
k=1

mt,k
j zk ≤ 0, nt,k

j = −ht
jI

t+1,k
j − xt,k

j , nt,0
j +

Kt∑
k=1

nt,k
j zk ≤ 0 j ∈ J, k ∈ KT , t ∈ T

φk =

T∑
t=1

∑
j∈J

(
qt,kj + xt,k

j

)
, mt,k

j = ctjI
t+1,k
j − xt,k

j , mt,0
j +

Kt∑
k=1

mt,k
j zk ≤ 0 j ∈ J, k ∈ KT , t ∈ T

Ht,0
j +

∑
k∈Kt

Ht,k
j ≤ sj , q

t,0
j +

∑
k∈Kt−1

qt,kj zk ≥ 0 j ∈ J, k ∈ KT , t ∈ T

It+1,k
j = xt,k

j = qt,kj = 0 j ∈ J, k ∈ KT \Kt, t ∈ T

4. Case Analysis. Taking Jinnan Fuqiang Power Co., Ltd. WD615.87 remanufactured
engine as an example, the impact of uncertainty demand on retailer inventory was ana-
lyzed. From [12], consider a 12 period inventory problem.
Let the support set of uncertain factor (z1, z2, . . . , z11) be w = {z : −5 ≤ zk ≤ 5, k =

1, . . . , 12}, the mean support set is w = {0}. Since w ⊂ G, there is sufficient inventory to
meet maximum demand (zk = 1), which is

∑12
k=1 zkyk ≤ r ⇔

∑12
k=1 |yk| ≤ r. Therefore, it
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can be converted into a standard linear constraint. The optimization problem under the
above conditions is equivalent to

min
12∑
t=1

J∑
j=1

(
xt,0
j + ptjq

t,0
j

)

s.t. −xt,0
j + ctjI

t+1,0
j +

6∑
k=1

∣∣∣ctjIt+1,k
j − xt,k

j

∣∣∣ ≤ 0 j = 1, t = 1, 2, . . . , 12

−xt,0
j − ht

jI
t+1,0
j +

6∑
k=1

∣∣∣−ht
jI

t+1,k
j − xt,k

j

∣∣∣ ≤ 0 j = 1, t = 1, 2, . . . , 12

It+1,k
j = It,kj + qt,kj − dt,kj ,−qt,0j +

6∑
k=1

∣∣∣qt,kj

∣∣∣ ≤ 0 j = 1, t = 1, 2, . . . , 12, k = 1, 2, . . . , 6

I1,0j + qt,0j − dt,0j +

6∑
k=1

∣∣∣It+1,k
j + qt,kj − dt,kj

∣∣∣ ≤ sj j = 1, t = 1, 2, . . . , 12, k = 1, 2, . . . , 6

I1j

(
z0
)
= 0, It,kj = xt,k

j = qt,kj = 0 j = 1, k = 2(t− 1) + 1, . . . , 12, t = 1, 2, . . . , 12

4.1. The impact of demand information in the first cycle on the optimal or-
dering strategy. Assuming p11 = p21 = p31 = 8, h1

1 = h2
1 = h3

1 = 4, c11 = c21 = c31 = 2,
s11 = s21 = s31 = 45, the optimal order quantity for different periods is shown in Figure
1. On the whole, the demand information of the first cycle has a greater impact on the
optimal order quantity of every following cycle, and the overall change trend is consistent
with the change of the demand influence factor. The significant difference is the optimal
order quantity for the last two cycles. When the demand trend information for the first
cycle is d11 = 35, the optimal order quantity is zero. The main reason is that when the
demand information of the first cycle is large, the retailer has a large order quantity in
each cycle.

Figure 1. The impact of optimal order quantity by first period demand information

4.2. The impact of out-of-stock costs per unit of product on the optimal order-
ing strategy. Assume p11 = p21 = p31 = 8, d11 = 25, c11 = c21 = c31 = 2, s11 = s21 = s31 = 40.
As being shown in Figure 2, when the out-of-stock cost per unit product is less than the
order cost of the unit product, the order quantity of the first period is slightly larger
than the demand information of the first period (d = 25) and the order quantity for the
twelfth cycle is zero. When the out-of-stock cost per unit product is not less than the
subscription cost per unit product, the optimal order quantity for the first period is much
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Figure 2. The impact of optimal order quantity by unit shortage cost

larger than the demand information for the first period. The difference in order quan-
tity in the twelfth cycle is obvious: when the out-of-stock cost is equal to the ordering
cost, the optimal order quantity is much smaller than the inventory capacity; when the
out-of-stock cost is greater than the ordering cost, the optimal order quantity is slightly
smaller than the actual number of the eleventh cycle. No matter how the out-of-stock cost
changes, there is no significant change in the order quantity from the second period to
the tenth period. It can be seen that the impact of unit out-of-stock cost on the optimal
order quantity is mainly reflected in the first period and the last two periods. The main
reason is that when the out-of-stock cost per unit product is less than the subscription
fee, the retailer will consider the subscription fee, so the order quantity in the first cycle
will be relatively small; when the unit out-of-stock cost is greater than the order cost, the
retailer will be in the last two cycles and will choose to order more products.

4.3. The impact of inventory capacity on the optimal ordering strategy. As-
suming p11 = p21 = p31 = 8, h1

1 = h2
1 = h3

1 = 4, c11 = c21 = c31 = 2, d11 = 25, the order quantity
for different cycles is shown in Figure 3. Overall, the inventory size has a large impact on
the optimal order quantity for each cycle. The overall trend of the optimal order quantity
is consistent with the trend of demand factors. When the stock is small, the retailer’s
optimal order quantity is full stock to order; when the stock quantity is greater than the
demand information of the first period, except for the order quantity of the last period,

Figure 3. The impact of optimal order quantity by inventory capacity
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the order quantity of the previous period is less than the order quantity of the previous
period. The amount is slightly larger than the actual demand of the previous cycle.

4.4. The impact of inventory costs per unit of product on the optimal ordering
strategy. Assume p11 = p21 = p31 = 8, h1

1 = h2
1 = h3

1 = 4, d11 = 25, s11 = s21 = s31 = 45.
When the inventory cost per unit product changes, the optimal order quantity is shown
in Figure 4. Overall, the impact of unit inventory costs on the most ordered quantities is
not very large.

Figure 4. The impact of optimal order quantity by unit inventory cost

5. Conclusion. The contents of this paper covered how a multi-period robust optimiza-
tion model is established by using affine-adjustable robust method, and simulated by
Matlab in ROME environment. The impact of the first cycle demand information, out-
of-stock cost, inventory capacity and inventory cost on the optimal ordering strategy is
studied. The trend of demand changes is consistent; when the out-of-stock cost per unit
product is less than the order cost of the unit product, the order quantity of the first
period is much larger than the demand information of the first period, and when the
out-of-stock cost is equal to the order cost, the optimal order quantity is much smaller
than the inventory capacity; when the out-of-stock cost is greater than the order cost,
the optimal order quantity is slightly smaller than the actual demand quantity of the
eleventh period; overall, the stock size has a larger optimal order quantity per cycle. For
the impact, however, the overall trend of the optimal order quantity is consistent with the
trend of demand factors; the impact of unit inventory cost on the optimal order quantity
is not very large.

However, there are many factors that affect market demand. This paper only studies the
inventory management based on the previous cycle demand. There must be deficiencies in
the inventory management. For example, market position and marketing strategy should
be considered comprehensively.
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