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Abstract. The vast growth in containerized trade has obliged major ports to add ter-
minals for improved performance. The increasing number of terminals escalates the
demand for movement of containers and cargo among facilities, which process is known
as Inter-Terminal Transportation (ITT). A lack of adequate planning of ITT might lead
to a major problem such as empty-truck trips which then increase ITT cost and decrease
efficiency in the utilization of resources. To the best of our knowledge, the utilization of
Reinforcement Learning (RL)-based approaches remains limited. Therefore, in this pa-
per, we propose a Q-learning-based technique to reduce the number of empty-truck trips
by considering a critical constraint such as the task time-window. Our result shows that
the Q-learning-based technique finds 30.34% fewer empty-truck trips than simulated an-
nealing and 94.42% faster in terms of computational time.
Keywords: Inter-terminal transportation, Empty-truck trips, Q-learning

1. Introduction. Containerized shipment plays an important role in global trade which
has obliged most major ports to add terminals to satisfy the increasing container transport
demand. At the same time, adding terminals escalates the demand for transportation
of containers and cargo between terminals, which process is known as Inter-Terminal
Transportation (ITT).

ITT is required between various origins and destinations within a seaport, which in-
corporates facilities such as warehouses, truck depots, repair stations, customs, screening
and scanning facilities, and other dedicated transport terminals, as shown in Figure 1.
Consequently, ITT forms a complex transportation network, which, if not handled effi-
ciently, might become a major source of error, delay and inefficient resource utilization.
[1,2] stated that the main objective of an efficient ITT system is to minimize or eliminate
transport delay. Other objectives can be minimization of transport cost, handling time,
or empty-truck trips, and maximization of occupancy rates. A review conducted by [4]
showed that the empty-truck trip problem at container terminals is critical since trucks
are the main mode of freight transportation there; indeed, truck’s cargo space is limited,
and when it remains empty, costs still incurred. Busan Port is the largest container port
in South Korea, the fifth busiest in the world. In 1997, the South Korean government
decided to construct a new port, named as Busan New Port (BNP) as in Figure 2, to
alleviate cargo congestion.

BNP operates five container terminals with 23 berths. According to data collected
in 2013, approximately 2600 containers were moved between the terminals each day [3].
In 2014, the Busan Port Authority (BPA), as an operator of Busan Port, initiated a
project for surveying and analysis of the efficiency and quality of the ITT process. In
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Figure 1. Inter-terminal transportation of containers

Figure 2. Layout of Busan New Port [3]

Busan area, ITT has suffered profit decrease during the last few years [5] indicating how
critical an efficient ITT operation to the competitiveness of large seaport. Although many
researchers have attempted to tackle the ITT-related problems, most of them used the
optimization and metaheuristic approaches. To the best of our knowledge, the utilization
of RL-based approaches remains limited. Therefore, this paper proposes Q-learning, a
reinforcement learning algorithm, to minimize the number of empty-truck trips between
container terminals.
This paper is organized as follows. Section 2 discusses the related work. Section 3

provides a problem description. Section 4 outlines the proposed Q-learning technique,
and Section 5 presents the experimental results. Finally, Section 6 draws conclusions and
future work.

2. Related Work. In the literature, numbers of studies focusing on the reduction of the
number of empty-truck trips can be found. [4] executed a comprehensive review of the
empty-truck trip problem at container terminals. The author identified the causes, ben-
efits and constraints, and proposed two collaborative approaches, namely Collaborative
Logistics Network (CLN) and shared-transportation, to overcome the problem. [6] pro-
posed a Mixed Integer Linear Programming (MILP) formulation to minimize trips overall
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costs subjected to time windows. They showed that trip combination can reduce costs
as well as the number of empty-truck trips. [7] presented a model to reduce costs and
number of empty-truck trips by taking advantage of truck capacity. They demonstrated
that lack of coordination and collaboration between trucking companies in a port is one of
the causes of empty-truck trips. [8] developed a Discrete-Event Simulation (DES) model
to assess coordinated truck appointments and used it to solve the problem as a Trav-
eling Salesman Problem (TSP) with time windows. They integrated the approach with
a real-time Truck Appointment System (TAS) using data from Santo Antonio in Chile,
to reduce polluting gas emissions. [9] simulated trucks sharing in a port environment.
They found that collaboration among trucks increases port traffic but reduces gas emis-
sions. RL has been widely used in solving problems related to scheduling and routing.
[10-12] confirmed that RL is an efficient method to solve scheduling problems, while [13]
used modified Q-learning to find more optimal travel plan for an on-demand bus system.
Previous studies mentioned above have similar characteristics with ITT-related problem
in terms of transportation mode, demand, capacity, order time-window, and trip plan.
Nonetheless, RL has not yet been appropriately applied to ITT problem. The present
study used Q-learning to design specific states, actions, and rewards to fit the objective
of minimizing the total number of empty-truck trips at container terminals.

3. Problem Description. Some essential information of ITT operations that should
be provided includes demand, origin and destination terminals, delivery time windows,
available modes and connections [14]. In our case, ITT demand, origin and destination
terminals, delivery time windows, and available connections were known. For the trans-
portation mode, we use only truck with one container capacity. Solution to the ITT
problem here will satisfy the following restrictions: each transport task has to be per-
formed, by only one truck, within given time window. At the beginning, the starting
location of the truck is terminal 1. After the truck has served a task, its ending location
will be the destination of that task. The objective is to produce a trip plan that has
minimum empty-truck trips for a given tasks list.

4. Proposed Q-Learning. Reinforcement learning is an unsupervised machine-learning
technique dealing with a problem wherein autonomous agent can learn to select proper
actions by interacting with its environment. Every time agent performs an action, the
environment will return a reward or penalty. The agent will learn from these rewards
and penalties in order to develop a decision-making policy. The Q-learning algorithm,
proposed in [15], is one of the most utilized RL algorithms, with objective to learn a
state-action pair value Q(s, a) representing a long-term expected reward for each state-
action pair.

Q(st, a) = (1− a)Q(st, a) + α(r + γ∗ max[Q(st+1, a)]) (1)

where Q(st, a) is the expected value of executing action a in state s; r is the immediate
reward for executing action a; α is the learning rate; γ is the discount factor (0 ≤ γ ≤ 1)
that has an impact on the present value of future rewards; t is the stage of the action
taken; max[Q(st+1, a)] is the maximal value of Q under state st+1. In our case, the
original Q-learning was inadequate because our state, action and reward depend on many
characteristics, and not just on time-steps. Detailed definitions and explanations for each
state, action, and reward in our design will be provided in the following sub-sections.

4.1. Agent state. The state of the agent is defined as Spcn, where p is the previous
location of the agent, p = {1, 2, 3, 4, 5}. At the beginning, the value of p = 0 means
that there is no available previous location. The symbol c is the current location of the
agent. At first iteration, the value of c = 1. The last state element is n, the available
task characteristics. The agent will encounter different available task characteristics each
time state changes which is defined by comparing the current location of the agent to
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all available task origins. As shown in Figure 3(a), if current location of the agent is
terminal 1 then compared to all available task origins, the agent faces two available task
characteristics. The first characteristic is a task (task id 1) for which the task origin has
the same location as current location of the agent. The second one is a task (task id 2 & 3)
for which the task origin is not the same as its current location. Then, as shown in Figure
3(b), the agent is in terminal 3 and also encounters two available task characteristics, but
the situation is different from the previous state. Task id 1 is in grey since it is already
served; thus the remaining tasks are tasks 2 and 3, which respectively, have the opposite
route contrasted to previous task, and have, as their task origin, one that is not the same
as the current location of the agent.

Figure 3. Available task characteristics

Table 1 shows the eight possible available task characteristics, which consists of all
individual conditions and their combinations. Each available task characteristic is encoded
as a number (0, 1, . . . , 7). State S013 means the agent has no previous location, its current
location is terminal 1, and the available task characteristics have two conditions as stated
in Table 1 No. 3. The state space of our Q-learning is 240 states, since p has six possible
values (0, 1, 2, 3, 4, 5), c has five possible values (1, 2, 3, 4, 5), and n has eight possible
values (0, 1, . . . , 7).

Table 1. Available task characteristics

No. Available task characteristic combinations
Reverse route*

0 Current agent location == order origin
Current agent location != order origin

1
Reverse route*
Current agent location == order origin

2
Reverse route*
Current agent location != order origin

3
Current agent location == order origin
Current agent location != order origin

4 Reverse route*
5 Current agent location == order origin
6 Current agent location != order origin
7 No available order

*previous task destination == next task origin and

previous task origin == next task destination

4.2. Agent actions. A finite set of actions for an agent is defined as ai for i = 1, 2, 3, 4, 5.
a1 means the agent is not taking any task or idle; a2 means the agent takes a random
task; a3 means the agent takes a task that has reverse route with respect to previous task;
a4 means the agent takes a task for which its origin has the same location with current
location; a5 means the agent takes a task for which the task origin is not the same with
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current location. Considering the number of states and actions, Q-table used to store
Q-values, forms a matrix with 240 rows and five columns.

4.3. Rewards. A reward in RL is a form of feedback from the environment. Through
interaction with the environment, agent observes changes to the state and reward reflecting
in selected action. The agent uses this reward to draw a conclusion on how to behave in
certain state. In general, the objective is to learn what action should be taken at certain
state to gain maximum reward. In our case, the objective is determining the task to be
served to produce minimum number of empty-truck trips in ITT. Therefore, actions a3
and a4 will present the highest reward value producing maximum non-empty-truck trips.
Table 2 indicates the complete reward values applied based on actions and available task
characteristic criteria.

Table 2. Reward values with their criteria

Available task characteristics Action Reward value
0, 1, 2, 4 a3 10
0, 1, 3, 5 a4
0, 2, 3, 6 a5

10, 1, 2, 3, 4, 5, 6 a2
7 a1

0, 1, 2, 3, 4, 5, 6 a1 −10

The reward value for choosing these two actions (a3 and a4) is based on the condition
of the available task characteristics, 10. In other words, those actions are highly expected
to be taken by the agent in any state that has available task characteristics 0, 1, 2, 4 and
0, 1, 3, 5, respectively. Additionally, at the initial stage, the agent will receive a reward
value of −10 if he chooses action a3.

Table 3. Example of task table

Task id Origin Destination Start time window End time window
1 1 3 0 15
2 3 1 0 60
3 2 5 20 80
4 . . . . . . . . . . . .

5. Experimental Results. To assess the proposed method, we consider five scenarios
with different numbers of tasks as presented in Table 4. We compare the result of the
proposed algorithm with a metaheuristic algorithm, Simulated Annealing (SA), which
uses Greedy Location Targeted Heuristic (GLTH) [16]. For Q-learning, the γ value is set
to 0.9 and α = 0.01 then run for 100 episodes. Gamma (γ) is a discount factor for future
rewards, as a measure of how far ahead in time, the algorithm looks. To prioritize rewards
in distant future, the value of γ should be set closer to one. The value of gamma indicates
whether the agent prioritizes future or immediate reward. The alpha (α) refers to the
learning rate. Larger value of alpha allows the model to learn faster while a lower one lets
the model learn optimality more but may take longer. For SA, the initial temperature
(α) is set to 100, the cooling rate (β) to 0.01, and the stopping criterion is set at α = 0.
The algorithm was implemented in Python and run on a PC equipped with an Intel(R)
Xeon(R) CPU E3-1230 v5 of 3.40GHz and 16GB memory.
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Based on Table 4, RL exhibits better performance in terms of computational time and
finding the lowest number of empty-truck trips. The computational time of SA grows
exponentially as the number of tasks increased. For the fifth scenario, with 180 tasks,
RL was able to find 30.34% fewer trips than SA and was 94.42% faster in terms of
computational time.

Table 4. Result comparison between reinforcement learning and simulated annealing

Reinforcement learning Simulated annealing

No. Tasks
Lowest number of

t(s)
Lowest number of

t(s)
empty-truck trips found empty-truck trips found

1 10 4 0.7 4 1.6
2 20 10 1.43 9 6.2
3 40 19 6.64 21 50.23
4 80 29 9.22 34 125
5 180 62 59.46 89 1066

Figure 4 shows that cumulative reward increases dramatically between episode 0 and
10. It indicates that the agent learned faster in selecting task producing high reward.

Figure 4. Reward, cumulative reward, and number of empty-truck trips
per episode

Figure 5 shows that SA needs more time to find the lowest number of empty-truck
trips. It could find the minimum number of empty-truck trips after the temperature falls
below 37.

6. Conclusions and Future Work. Reinforcement learning could find the optimal
solution quickly, because it learns from previous experience through reward system. RL
has limitation when it learns only from a small number of experiences, and it tends
to make random decisions on situations that have not been learned. The effectiveness
of simulated annealing in finding optimal data relies on the effectiveness of the solution
generation. Without it, SA tends to try all possible combinations that lead to inefficiency.
The applicability of the proposed approach is still limiting with following assumptions:
the number of container terminals is fixed (five terminals); the number of tasks is static
and known in advance; and the trip plan only considers one available truck with one
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Figure 5. Change of number of empty-truck trips based on temperature

container load. More complex and realistic problems of ITT, such as multi-objective ITT
routing, collaborative ITT, and dynamic trips planning will be solved in future research.
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