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Abstract. It is crucial for the omnidirectional support walker (OSW) to achieve safe
and compliant control strategy based on user’s walking intention. However, there is still
a big challenge for compliant control because of the accurate recognition of gait speed and
the poor user experience from the complex wearing of sensors. In this paper, we developed
a laser sensor and proposed an improved particle filter to identify user’s walking speed
intention with a non-contact approach. The concept of secondary particle is introduced
to improve the resampling method of particle filter aimed at overcoming the loss of par-
ticle’s diversity and improving the accuracy of following. Finally, we implemented the
comprehensive experiment and comparison test. Results proved the superiority of our
proposed approach.
Keywords: Omnidirectional walker, Speed intention identification, Particle filter, Sec-
ondary particle

1. Introduction. With an aging society and rising labor costs, especially the shortage
of professional nurses [1], it has become a strong desire in the field of robotics to replace
human assistance with intelligent auxiliary equipment to assist the elderly or disabled
in daily life, which has a huge market prospect and research value. Various intelligent
walkers with compliance and excellent recognition effect of motion intention have been
developed to assist users completing auxiliary walking with poor walking capability [2]. In
previous studies, friendly interface and recognition accuracy have been widely considered
in intelligent walkers. In Tat et al.’s research [3], a new system was developed using
the measurement of subject’s resultant arm upper extremity loads. Jiang and Wang [4]
designed the forearm pressure detection system based on fuzzy inference to sense the
direction of the users’ motion. In the experiment process, significant changes of resultant
forces were observed. The recognition effect is significant, but too much attention is
concentrated on the upper limb during walking, and thereby the training effect on the
lower limb is weakened. In [5,6], the wearable auxiliary walker and direct detection of
surface electromyography (sEMG) are applied to the walking assist process. The intention
recognition effect based on support vector machine or BP neural network is significant.
However, complex dressing is unfriendly. Valadao [7] designed a new controller, laser range
finder and ultrasound are used to detect user’s leg, whose distances from the laser sensor
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provide the information necessary to the controller. There is neither a sensor attached to
the user’s body nor force sensors attached to the arm supports of the walker.
In recent studies, non-contact sensors have been widely used in active controlled human

interaction system, Xu et al. [8] and Weon and Lee [9] used low-cost light detection,
ranging sensor, inertia measurement units and Kinect to detect the lower limb of users
respectively. It retains the normal walking habits of users better. However, a large amount
of computation and interference bring great challenges to its accuracy and security. In
addition, the comfort and compliance of the user during walking are not considered very
well. The compliant control is proposed to improve the interaction and the accuracy of
intention recognition. In particular, the OSW can follow user’s walking intention without
additional thrust or manipulation. Therefore, it is extremely convenient and reliable that
an accurate and non-contact interface is designed to recognize the walking speed intention
[10].
In this paper, a single laser sensor is mounted at the bottom of the OSW to obtain

the users’ lower limb movement characteristics. It will be described in detail in Section
2. In Section 3, an improved particle filter is proposed to estimate and predict the motion
intention dynamically. And the proportion integration differentiation feedback motion
control function is applied to adjusting the motion of the walker according to the user’s
behavior. Then, we performed comprehensive and comparison experiments to demon-
strate their effectiveness in our laboratory environment. At last, we conclude the paper
in Section 5.

2. The Omnidirctional Support Walker. The OSW has four omni-wheels with driv-
ing motors which can move omni-directionally in narrow space without turning radius
as shown in Figure 1. It is widely used in various intelligent medical places, such as
intelligent nursing homes, and intelligent hospitals.

Figure 1. The structure of OSW and omni-directional wheel

The height of OSW can be adjusted to adapt to different user heights (900-1200mm).
The limit of OSW speed is 0.25m/s to ensure the safety of users. The laser sensor is
installed in the position shown in Figure 2. The sampling time of laser sensor is 100ms,
measuring range is 240◦, 4000mm. A single laser senor can cover the user’s normal walking
range. In this paper, the lower limb is regarded as a cylinder. We use the clustering
principle and the perimeter angle theorem to represent the user’s lower limb feature points
as the center points of the equivalent model as shown in Figure 2.
The user’s active area is limited to the angle range shown in Figure 3 due to the safe

mechanical structure. Therefore, we consider the ±60◦ area with the axis line of the posi-
tion of the laser sensor as the effective sampling range. The laser sensor collects the lower
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Figure 2. Equivalent model

Figure 3. Design of interaction mode

limb movement information of the user and returns the polar coordinate data composed
of angle and distance values. Specifically, we focus on the change of user’s moving speed.
Therefore, in order to improve analysis efficiency, coordinate transformation is necessary.
Parameters can be used as motion information as shown in Figure 3.

The red points in Figure 3 represent the user’s lower limbs, where α1 and α2 represent
the angle between the lower limb and the laser sensor respectively. The angle can be
computed as

α1 =
(

P 1
i − 171

)

·Kα (1)

α2 =
(

171− P 2
i

)

·Kα (2)

then, ∆α can be computed, ∆α represents the relative angle of two feet, and L1, L2

represent the distance between the lower limb and the laser sensor, which is obtained
directly from the measurement. From these, we can get the vertical distance of the lower
limb to the laser sensor,

d1y = L1 · cosα1 (3)

d2y = L1 · cosα2 (4)

then ∆dy can be computed, and the horizontal distance of the user’s feet on the 2D plane
also can be computed. The above parameters based on Figure 3 can be regarded as the
eigenvalues of user motion information.
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The control system of OSW includes laser sensor, main controller and driving motors.
As shown in Figure 4, the user’s walking state is captured by the laser sensor and used
as the input of the main controller after coordinate transformation, filtering and feature
extraction.

Figure 4. Compliance control system of OSW

Then, an improved particle filter is proposed to predict user location based on input
distance value. Finally, the output position information is converted into the speed value
to drive the motor of omni-wheels.

3. Gait Speed Recognition Based on Improved Particle Filter Method. Parti-
cle filter uses prior information and observation information [11] to predict the optimal
location of pedestrians under the Bayesian framework. In this section, we explain overall
framework and the concept of secondary particle into the particle filter method to solve
the problem of the lack of diversity of particle filter and improve the recognition rate of
the control system.
Firstly, we consider the center of the feet equivalent model as the feature point, such

as pl and pr in Figure 5. Then, pb can be calculated as the midpoint on the line segment
based on pl and pr. Specifically, pb = (xb, yb) is regarded as the body position.
The coordinate value as the feature point at time t, is represented as a set of n samples,

s
(i)
t =

{

x
(i)
t w

(i)
t

}

(i = 1, 2, . . . , n) (5)

And each sample is treated as a particle composed of plane coordinates and weights,
where i denotes the i-th particle.

x
(i)
t =

[

x
(i)
t y

(i)
t

]T

(6)

xt is defined as process state vector Xt. Pb denotes the body position of the current state,
and Pp is regarded as the prediction position at t + 1 based on Pb. Besides, the sensor
observation vector for measurement value mt is defined as Mt.
To estimate the posterior probability P (Xt|Mt) of Xt given Mt, we need to calculate

as follows to build a desired model.
1) Initialization. We set the number of n initial particles to represent the body position

at t0, which are denoted by
{

si0|0|1 ≤ i ≤ n
}

, and x
(i)
0 is obtained through sampling
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Figure 5. Estimation of body position

drawn from a Gaussian distribution with the variance vector σ2
0 and the mean vector µ0.

Moreover, its weight value is constant with equal magnitude [12].
2) Computation of the posterior probability. The mathematical model representing the

process of lower limb movement is described as follows:

x
i
t|t−1 =

[

x
(i)
t|t−1

y
(i)
t|t−1

]

=

[

x
(i)
t−1|t−1

y
(i)
t−1|t−1

]

+

[

u
(i)
x,t−1

u
(i)
y,t−1

]

(7)

The state at time t is considered to be only related to the state at time t − 1 and the
process random noise. Then the posterior probability can be calculated:

p(i)(Xt|Mt) =
1√
2πσs

exp

(

−D(i)2

2σ2
s

)

(8)

where σs denotes the standard deviation for the permissible location error. In addition,

the Euclidean distance D(i) between mt and x
(i)
t is defined as:

D
(i)
k =

∥

∥

∥
x
(i)
t|t−1 −mt

∥

∥

∥
(9)

3) Computation of the weight value. The associated weight value is computed:

w
(i)
t =

p(i)(Xt|Mt)
∑n

i=1 p
(i)(Xt|Mt)

(10)

4) An improved resampling method based on secondary particles. In previous studies,
SIR particle filter algorithm was used to solve the problem of particle degradation, and it
increased the computational efficiency and reduced the deviation. However, it will cause
the loss of particle’s diversity [13]; concretely, the resampling method based on importance
leads to most particles have the same weight. It makes specific problems: when the legs
are too close to each other or disturbance occurs, the tracking effect will be reduced.
There will be a huge challenge to the security and compliance of the system. Therefore,
we introduce the concept of secondary particles to improve the problem.

The concept of secondary particles refers that we generate new particles around the
original particles by considering both weight values and Gaussian distribution principle
randomly in the process of resampling. According to the rules of resampling weight
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allocation, the sum of the weights of the n particles at time t is 1. Therefore, we can
divide [0, 1] into n parts according to the particle weights:

{

[

0, w1
]

,
[

w1, w1 + w2
]

, . . . ,

[

N−1
∑

i=1

wi,

N
∑

i=1

wi

]}

(11)

Then a random value ui is generated in the interval to mark the reserved particle. In
particular, if ui is included in the interval i, then the particle sit whose weight is wi is
retained and generated as secondary particle. After N times generation, if ui fall in the
interval ni times, sit will generate ni secondary particles. And the secondary particles
satisfy the normal distribution as follows:

s̃it ∼ N
(

sit, α
2
)

(12)

The mean of the distributions is sit, and the variance is α2. It is determined by the
degree of particle degradation and variance of state variables.
After introducing the second-order particles, the particles with large weights will gen-

erate more particles with high probability in the resampling stage. It avoids particle
degradation and increases the diversity of particles by increasing the randomness of re-
sampling.
5) Estimation and prediction of body position. The resampled particles are used to

estimate and predict the user’s body position.

x̂t =
1

n

n
∑

i=1

x
(i)
t|t (13)

Then repeat the above steps and iterate to obtain continuous prediction information.
The position prediction is

x̃t|t =

[

x̂t

ŷt + ẏδt

]

(14)

δt represents the sampling period.

4. Experiments and Results. In this section, we will verify the effectiveness and supe-
riority of the improved algorithm based on PID controller in the laboratory environment.
Firstly, we conducted an OSW compliance control experiment to verify the effectiveness
of the improved algorithm.
As shown in Figure 6, six 20s healthy subjects were asked to move forward/backward,

mimicking the gait of older adults with as little exposure to OSW as possible. During the
experiment, the input of the control system is only acquired by the laser sensor.
The snapshots in Figure 7 represent four typical motion states, each point represents a

particle, and the initial distribution of particles is shown in Figure 7(a).
At the beginning of the experiment, the subject was standing in the center of the OSW,

and through the detection of the lower limb by the laser sensor, the improved particle filter

Figure 6. Forward movement experiment in lab-environment
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Figure 7. Motion state identification of typical state

algorithm can estimate the user’s body position and thus obtain the predicted information
as shown in Figure 7(b). When the subject starts to walk, its particle distribution and
estimate position is shown in Figure 7(c). Specially, when the legs alternate in walking,
both of legs are too close to be distinguished by the laser sensor as shown in Figure 7(d),
but the improved algorithm can still get a better prediction effect. As the movement
state of users changes continuously, the laser sensor captures real-time information as
input constantly. Then, the prediction can be calculated by the algorithm constantly.

Then, we compared compliance differences by having subjects operate OSW in the
normal way under different algorithms. To make comparison easier, data on the start and
near the completion of walking were excluded. 30s of movement was performed and the
results were as shown in Figure 8.

Figure 8. Experimental results based on particle filter algorithm and im-
proved particle filter algorithm

As shown in Figure 8, the red solid line represents the actual movement of users,
and the blue dashed line represents the recognition of OSW in different compliant control
systems. It is obvious that the improved algorithm has excellent following effect. However,
the system still overshot when the user accelerated between 15s and 20s. It may have a
negative impact on user’s feeling.
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Then, we analyzed the subjective feelings of the subjects through questionnaires. Dur-
ing the experiment, subjects were not specifically informed of the experimental group (PF
or IPF). This helps us to get a fair result in the process of investigation.
As shown in Figure 9, we asked subjects to rate them from the following four aspects

respectively (10 points). Subjective evaluation proves that the improved particle filter
algorithm optimizes the user’s experience.

Figure 9. Subjective comfort survey

Finally, the two algorithms were evaluated comprehensively by combining subjective
scoring and accuracy.
According to the experience, the difference value between user speed and the OSW

following speed ∆v ≤ 0.1m/s is considered as accurate identification to user’s intention.
Based on the experimental results, we can obtain the correct rate of both algorithms. The
results are shown in Table 1. Both algorithms have excellent operability and accuracy,
especially the improved algorithm has better performance.

Table 1. Comprehensive evaluation of the two algorithms

Algorithm Subjective evaluation Correct rate
Particle filter 7.42 82.4%

Improved particle filter 8.61 88.9%

5. Conclusion and Future Work. The main contribution of this study is the proposal
of a method for identifying users’ speed intent based on improved particle filter. The
results show that the method improved the accuracy and operation feeling. The interface
can improve the compliance of the system. What is more, we will consider more details to
improve the using quality in the future work. The transient instability of user acceleration
needs to be further improved. Besides, the safety of the user’s moving state in daily
training still needs to be considered.

REFERENCES

[1] L. Peng and Z. G. Hou, Physical interaction methods for rehabilitation and assistive robots, Auto-
matica Sinica, vol.11, no.4, pp.2000-2010, 2018.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.11, NO.10, 2020 937

[2] D. P. Losey, C. G. McDonald, E. Battaglia and M. K. O’Malley, A review of intent detection,
arbitration, and communication aspects of shared control for physical human-robot interaction,
Applied Mechanics Reviews, vol.70, no.1, pp.12-19, 2018.

[3] C. C. Tat, S. Parasuraman and M. K. Khan, Walking support system of ageing community, IEEE
International Conference on Recent Trends in Electrical, Control and Communication (RTECC),
pp.28-34, 2018.

[4] Y. L. Jiang and S. Y. Wang, A novel direction control method for walking support with an omini-
directional walker, Mecharonics and Automation, vol.314, no.12, pp.244-252, 2014.

[5] C. Valadao, E. Caldeira, T. Bastos-Filho and A. Frizera-Neto, A new controller for a smart walker
based on human-robot formation, Sensors, vol.16, no.7, pp.153-161, 2016.

[6] B. E. Lawson, J. Mitchell, D. Truex, A. Shultz, E. Ledoux and M. Goldfarb, A robotic leg prosthesis:
Design, control, and implementation, IEEE Robotics and Automation Magazine, vol.21, no.4, pp.70-
81, 2016.

[7] F. Negro, S. Muceli and M. Castronovo, Multi-channel intramuscular and surface EMG decomposi-
tion by convolutive blind source separation, Journal of Neural Engineering, vol.13, no.2, 2016.

[8] W. X. Xu, J. Huang and L. Cheng, A novel coordinated motion fusion-based walking-aid robot
system, Sensors, vol.18, no.9, pp.256-273, 2018.

[9] L. S. Weon and S. G. Lee, Intelligent robotic walker with actively controlled human interaction, Etri
Journal, vol.40, no.4, pp.522-530, 2018.

[10] W. X. Xu and J. Huang, Reinforcement learning-based shared control for walking-aid robot and its
experimental verification, Advanced Robotics, vol.29, no.22, pp.1463-1481, 2015.

[11] S. J. Lee and M. Won, A vision based people tracking and following for mobile robots using
CAMSHIFT and KLT feature tracker, Journal of Korea Multimedia Society, vol.17, no.7, pp.174-188,
2015.

[12] E. Aguirre, S. M. Garcia and J. Plata, Leg detection and tracking for a mobile robot and based
on a laser device, supervised learning and particle filtering, Proceedings of the 2nd Iberian Robotics
Conference – Adcances in Robotics, Lisbon, Portugal, pp.645-657, 2016.

[13] X. Wang and Z. M. Tang, Modified particle filter-based infrared pedestrian tracking, Infrared Physics
and Technology, vol.53, no.4, pp.280-287, 2010.

[14] J. Yim and S. Jeong, Improvement of Kalman filters for WLAN based indoor tracking, Expert
Systems with Applications, vol.37, no.1, pp.426-433, 2010.


