
ICIC Express Letters
Part B: Applications ICIC International c©2020 ISSN 2185-2766
Volume 11, Number 1, January 2020 pp. 103–110

DESIGN AND ANALYSIS OF A NOVEL FIVE-DIMENSIONAL

HYPER-CHAOTIC SYSTEM

Sadiq Abdul Aziz Mehdi and Ashwaq Auda. Kadhim

Computer Science Department
College of Education

University of Al-mustansiryah
Baghdad 10052, Iraq

sadiqmehdi71@uomustansiriyah.edu.iq; ashwak9387@gmail.com

Received July 2019; accepted October 2019

Abstract. This paper describes a novel five-dimensional hyper-chaotic system, where
the novel system has twelve positive parameters and the basic features and dynamic behav-
ior of the chaotic system are tested through the usage of equilibrium points, dissipativity,
symmetry, Lyapunov exponents, waveform analysis, Kaplan-Yorke dimension, and sen-
sitivity to initial conditions. It has found that the system has two unstable equilibrium
points as well as it is a dissipative system, it has symmetric pairs of coexisting attractors,
such as limit cycles or strange attractors, it has two non-negative Lyapunov exponents
where the maximum non-negative Lyapunov exponent is (0.721821), Kaplan-Yorke di-
mension has been calculated as (2.66735), and it can be observed that the waveform of the
time range has non-periodic properties. These results confirm that the nonlinear system
is actually a hyperactivity system, random, and shows great complexity, as it is highly
sensitive to initial conditions and therefore unpredictable for long periods.
Keywords: Hyper-chaotic system, Five-dimensional, Lyapunov exponents, Waveform
analysis, Equilibrium points

1. Introduction. Chaos is a prevalent phenome in nature that is being widely utilized
in varied applications in numerous domains of study, like biology, information processing,
mathematics, physics, secure communications, engineering, high-performance circuit de-
sign for telecommunications [1,2]. It has a noise-like behavior, and it exists in nonlinear
dynamical systems. The engendered sequences from chaotic systems are very sensitive to
their initial conditions; it has a long periodicity and spread spectrum [3].

These characteristics of chaotic system have a solid interconnection with features of
cryptography. So, they have been a favorite selection for styling security primitives and
cryptosystems in chaos-based cryptography for a long time [4]. In comparison with chaotic
systems, hyper-chaotic systems have a tendency to have extra complex dynamics [5].

The hyper-chaotic system is often defined as a chaotic system with more than one pos-
itive Lyapunov exponent, i.e, the numeral of directions of pervasion is larger than one,
which results the system to show the behavior of high disorder and randomness. Every
day the number of articles that relates to introducing new hyper-chaotic system is in-
creasing. Normally, generating a hyper-chaotic system with a more complex topological
construction specially, making attractors with multi-wings or multi scrolls, is a motivat-
ing topic for analysis, and thus, becomes a fascinating mission and typically a key case
for several engineering applications [6,7].

The first classical hyper-chaotic system is the known hyper-chaotic Rössler system
[8]. Afterward, numerous hyper-chaotic systems have been advanced and therefore the
applications of this model have been improved lately. Onto the bygone ages, numerous
other hyper-chaotic systems have been presented, like hyper-chaotic Chen system [9],
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hyper-chaotic Lü system [10], hyper-chaotic Lorenz system [11], hyperchaos chua’s circuit
[12], hyper-chaotic Nikolov system [5]. The hyper-chaotic system has more complicated
and intense construction than a chaotic system for the reason that numerous ingrained
advantages, the hyper-chaotic system has been widely utilized in numerous domains such
as information science, electronics, mathematics, physics, communication as given in [14].
The building of different hyper-chaotic systems and their study are beneficial to re-

connoitering the nature of hyperchaos. They are extremely interesting to create different
hyper-chaotic systems with the most hyper-chaotic nature and complicated dynamics [14].
The research has ripened at the trend of styling upper dimensional hyper-chaotic systems
and a current concentration is on designing 5-D systems with best characteristics and
dynamics [15,16].
In this paper, a novel five-dimensional chaotic system is presented and the dynami-

cal behavior characteristics of the proposed system are studied and analyzed using the
mathematica program. The new chaotic system is convenient to be utilized in many im-
plementations and could be utilized in info encryption, because of the large group of keys
that can be created from the system.
This paper is structured as follows. Section 2 introduces the construction of the novel

five-dimensional system. Section 3 presents dynamics analysis of the system, equilibrium
point, dissipativity, symmetry and invariability, Lyapunov exponents and Lyapunov di-
mensions, waveform analysis of the novel chaotic system, sensitivity to initial conditions.
Section 4 provides the conclusion.

2. Construction of the Novel Five-Dimensional System. The novel five-dimensional
autonomous system is gotten as follows:

dx

dt
= −ax+ bv + cyzw

dy

dt
= dy − exzw − f sinh(w)

dz

dt
= −gz + xy + hv (1)

dw

dt
= iy − w − tanh(v)x

dv

dt
= −jxz + kv + l cosh(w)

where x, y, z, w, v and t ∈ R
+ are called the states of the system and b, c, a, d, e, f , g,

h, i, j, k and l are positive parameters of the system.
The 5-D system (1) displays a chaotic attractor, when the system parameter values are

chosen as: a = 8, b = 4.6, c = 1.3, d = 1.2, e = 0.3, f = 2, g = 2.5, h = 0.1, i = 5,
j = 3, k = 1.8, and l = 7 and the initial conditions as: x(0) = 0.5, y(0) = 0.4, z(0) = 0.6,
w(0) = 1.4 and v(0) = 1.8. The strange attractors in three-dimension are shown in Figure
1, and the strange attractors in two-dimension are shown in Figure 2.

3. Dynamics Analysis of the System. In this department, fundamental features and
complicated dynamics of the novel system (1) are inspected; the novel dynamic system
has the next fundamental features.

3.1. Equilibrium point. We can acquire that system (1) has two equilibrium points:

0 = −ax+ bv + cyzw

0 = dy − exzw − f sinh(w)
0 = −gz + xy + hv (2)
0 = iy − w − tanh(v)x
0 = −jxz + kv + l cosh(w)
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Figure 1. Chaotic attractors three-dimensional view

Figure 2. Chaotic attractors two-dimensional view

When a = 8, b = 4.6, c = 1.3, d = 1.2, e = 0.3, f = 2, g = 2.5, h = 0.1, i = 5, j = 3,
k = 1.8, and l = 7, the two equilibrium points become:

E0{x = 0, y = 0, z = 0, w = 0, v = 0},
E1{x = −7.16838, y = −6.25877, z = 16.1932, w = −43.8217, v = −56.8716}.
The Jacobian matrix uses a partial differential equation to obtain the equilibrium point,

the Jacobian is found at each equilibrium point to confirm its unstability. The Jacobian
matrix of the system (1), let:

f =







































f1 =
dx
dt

= −ax + bv + cyzw

f2 =
dy
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= dy − exzw − f sinh(w)
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= −gz + xy + hv

f4 =
dw
dt

= iy − w − tanh(v)x
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dv
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= −jxz + kv + l cosh(w)

(3)
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J =













−a czw cyw cyz b

−ezw d −exw −exz −f cosh(w)
y x −g 0 h

tanh(v) i 0 −1 x sech tanh(v)
−jz 0 −jx l sinh(w) k













(5)

For equilibrium point E0{x = 0, y = 0, z = 0, w = 0, v = 0}, and a = 8, b = 4.6,
c = 1.3, d = 1.2, e = 0.3, f = 2, g = 2.5, h = 0.1, i = 5, j = 3, k = 1.8, and l = 7, the
Jacobian matrix has the following result:

J =













−8 0 0 0 4.6
0 1.2 0 0 −2
0 0 −2.5 0 0.1
0 5 0 −1 0
0 0 0 0 1.8













(6)

To gain its eigenvalues, let |λI − J | = 0. Then the eigenvalues that corresponding to
the equilibrium E0(0, 0, 0, 0, 0) are respectively obtained as follows:

λ1 = −8, λ2 = −2.5, λ3 = 1.8, λ4 = 1.2, λ5 = −1

Therefore, the equilibrium E0(0, 0, 0, 0, 0) is a saddle point. So, the hyper-chaotic system
is unstable at the point E0. At the same time, it is easy to prove that the equilibrium
point E1 is also an unstable saddle point. For equilibrium point E1{x = 3.99397, y =
0.850088, z = 1.63191, w = 0.25648, v = 6.84548} and a = 8, b = 4.6, c = 1.3, d = 1.2,
e = 0.3, f = 2, g = 2.5, h = 0.1, i = 5, j = 3, k = 1.8, and l = 7, the Jacobian matrix
has the following result:

J =













−8 1.3 ∗ 1.631 ∗ 0.526 1.3 ∗ 0.850 ∗ 0.256 1.3 ∗ 0.850 ∗ 1.631 4.6
−0.3 ∗ 1.631 ∗ 0.256 1.2 −0.3 ∗ 3.993 ∗ 0.256 −0.3 ∗ 3.993 ∗ 1.631 −2 ∗ cosh(0.256)

0.850 3.993 −2.5 0 0.1
tanh(6.845) 5 0 −1 3.993 ∗ sech tanh(6.845)
−3 ∗ 1.631 0 −3 ∗ 3.993 7 ∗ sinh(0.256) 1.8













(7)

In the same way, the eigenvalues corresponding to an equilibrium point E1 are obtained
as:

λ1 = −7.03841, λ2 = −1.9232 + 5.31805i, λ3 = −1.9232− 5.31805i, λ4 = 3.08341

λ5 = −0.698601

where i indicates the unity of fanciful number. With regard to the equilibrium point E1,
the results display that λ1, λ4 and λ5 are positive and negative real numbers, λ2 and λ3

become a pair of complex conjugate eigenvalues with negative real parts. So, equilibrium
point E1 is saddle-focus point; thus, these equilibrium points are all unstable.

3.2. Dissipativity. System (1) can be expressed in vector notation as:

f =







































f1 =
dx
dt

= −ax+ bv + cyzw

f2 =
dy

dt
= dy − exzw − f sinh(w)

f3 =
dz
dt

= −gz + xy + hv

f4 =
dw
dt

= iy − w − tanh(v)x

f5 =
dv
dt

= −jxz + kv + l cosh(w)

(8)

The divergence of the vector field f on R5 is given by

∇ · f =
∂f1

∂x
+

∂f2

∂y
+

∂f3

∂z
+

∂f4

∂w
+

∂f5

∂v
(9)

We note that ∇ · f measures the rate at which volumes change under the flow Φt of f .
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Let D be a region in R5 with a smooth boundary and let D(t) = Φt(t), the image of
D under Φt, the time t of the flow of f . Let V (t) be the volume of D(t). By Liouville’s
theorem, we get:

dV

dt
=

∫

D(t)

(∇ · f) dxdydzdwdv (10)

For system (1), we find that
∇ · f = ∂f1

∂x
+ ∂f2

∂y
+ ∂f3

∂z
+ ∂f4

∂w
+ ∂f5

∂v
= −a + d − g − 1 + k < 0 because a, d and k are

positive constants. Substituting (9) into (10) and simplifying, we get

dV

dt
= (−a + d− g − 1 + k)

∫

D(t)

dxdydzdwdv

= (−a + d− g − 1 + k)V (t)
= e−8.5V (t)

(11)

Solving the first order linear differential equation (11), we obtain the unique solution

V (t) = V (0)e(−a+d−g−1+k)t

= V (0)e−8.5t (12)

Equation (12) shows that any volume V (t) must shrink exponentially fast to zero with
time. Thus, the dynamical system described by (1) is a dissipative system. As (1) is a
dissipative system, all orbits of the system (1) are eventually confined to a specific of R5

that has zero volume. Hence, the asymptotic motion of the system (1) settles onto an
attractor of system (1).

3.3. Symmetry and invariability. When the coordinate (x, y, z, w, v) is transformed
into (−x, −y, z, −w, −v), the novel system is invariant and has the symmetry about the
z-axis. In order to demonstrate the conclusion, let:

x = −x, y = −y, z = z, w = −w and v = −v (13)

And then we have:

−
dx

dt
=

dx

dt
, −

dy

dt
=

dy

dt
,

dz

dt
=

dz

dt
, −

dw

dt
=

dw

dt
, and −

dv

dt
=

dv

dt
(14)

−
dx

dt
= ax− bv − cyzw

−
dy

dt
= −dy + exzw + f sinh(w)

dz

dt
= −gz + xy + hv (15)

−
dw

dt
= −iy + w + tanh(v)x

−
dv

dt
= jxz − kv − l cosh(w)

According to Equation (14) and Equation (15), the result is obtained as follows:

dx

dt
= −ax+ bv + cyzw

dy

dt
= dy − exzw − f sinh(w)

dz

dt
= −gz + xy + hv (16)

dw

dt
= iy − w − tanh(v)x
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dv

dt
= −jxz + kv + l cosh(w)

It is easy to see that system (1) is invariant under the coordinates transformation
(x, y, z, w, v) → (−x,−y, z,−w,−v) which persists for all values of the system parameters.
Thus, system (1) has rotation symmetry about the z-axis. It is also easy to see that the
z-axis is invariant under the flow of system (1). It means this five-dimensional system
could also have symmetric pairs of coexisting attractors, such as limit cycles or strange
attractors.

3.4. Lyapunov exponents and Lyapunov dimensions. According to the nonlinear
dynamical theory, a quantitative mensuration method of the sensitive dependence on the
initial conditions is calculating the Lyapunov exponent. It is the average rate of diver-
gence (or convergence) of two neighboring trajectories. Furthermore, the five Lyapunov
exponents of the nonlinear dynamical system (1) with parameters a = 8, b = 4.6, c = 1.3,
d = 1.2, e = 0.3, f = 2, g = 2.5, h = 0.1, i = 5, j = 3, k = 1.8, and l = 7, are
obtained as follows: L1 = 0.721821, L2 = 0.133932, L3 = −1.28232, L4 = −2.36733 and
L5 = −5.70623.
It can be seen that the biggest Lyapunov exponent is positive, showing that the system

has chaotic properties. L1 and L2 are positive Lyapunov exponents, and the remaining
three Lyapunov exponents are negative. Hence, the system is hyper-chaotic. The fractal
dimension is also a typical characteristic of chaos calculated Kaplan-Yorke dimension by
Lyapunov exponents, and DKY can be expressed as [17]:

DKY = j +
1

|Lj+1|

j
∑

i=1

Li (17)

where j says the first j Lyapunov exponent is nonnegative, namely, j is the maximum
value of i value which meets both

∑j

i=1 Li > 0 and
∑j+1

i=1 Li < 0 at the same time. Li

is in descending order of the sequence according to the sequence of Lyapunov exponents.
DKY is the upper bound of the dimension of the system information. For the system in
this work, by observing the values of five Lyapunov exponents in the above, we determine
that the value of j is two, and then the Kaplan-Yorke dimension can be expressed from
the above due to L1 + L2 > 0 and L1 + L2 + L3 + L4 + L5 < 0, the Lyapunov dimension
of the novel chaotic system is:

DKY = j +
1

|Lj+1|

j
∑

i=1

Li −→

DKY = 2 +
1

|Lj+1|

2
∑

i=1

Li = 2 +
L1 + L2

L3
= 2 +

0.72182 + 0.13393

1.28232
= 2.66735

It means that the Lyapunov dimension of system (1) is fractional. Because of the fractal
nature, the new system has non-periodic orbits; what is more, its nearby trajectories
diverge. Therefore, there is really chaos in this nonlinear system.

3.5. Waveform analysis of the novel chaotic system. The waveform of a chaotic
system should be aperiodic to demonstrate that the proposed system is a chaotic system.
The waveforms of (x(t), y(t), z(t), w(t), v(t)) in the time domain are shown in Figure 3.
The waveforms of (x(t), y(t), z(t), w(t), v(t)) are aperiodic. It can be observed that the
time domain waveform has non-cyclical properties.
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Figure 3. Time versus (x, y, z, w, v) of a new chaotic scheme

3.6. Sensitivity to initial conditions. Long-term unpredictability is the most charac-
teristic feature of a chaotic system. This comes about because of sensitive dependence of
solutions on initial conditions. Two different initial conditions, no matter how close, will
eventually become widely separated. Thus, for any finite number of digits of accuracy in
an initial condition, there will be a future time at which no accurate predictions can be
made about the state of the system.

Figure 4 shows that the evolution of the chaos trajectories is very sensitive to initial
conditions, where the initial values of the system are set to: x(0) = 0.5, y(0) = 0.4,
z(0) = 0.6, w(0) = 1.4 and v(0) = 1.8, which represent in solid (blue) line and the initial
values x(0) = 0.5, y(0) = 0.4, z(0) = 0.00000006, w(0) = 1.4 and v(0) = 1.8 represent in
dashed line.

Figure 4. Sensitivity tests of the novel system

4. Conclusion. In this paper, we have introduced a new 5-D hyper-chaotic system, which
has been successfully validated by the system analysis by means of equilibrium points,
dissipativity, symmetry, Lyapunov exponents, waveform and sensitivity to initial condi-
tions. The system generates the hyper chaos behavior when parameter values are: a = 8,
b = 4.6, c = 1.3, d = 1.2, e = 0.3, f = 2, g = 2.5, h = 0.1, i = 5, j = 3, k = 1.8,
and l = 7 and the initial conditions as: x(0) = 0.5, y(0) = 0.4, z(0) = 0.6, w(0) = 1.4
and v(0) = 1.8, the Lyapunov exponents for the system L1 = 0.721821, L2 = 0.133932,
L3 = −1.28232, L4 = 2.36733 and L5 = −5.70623. It means the system is hyper chaotic
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because it has two positive Lyapunov exponents, the fractal dimension is 2.66735, the
new system has two unstable equilibrium points, and the new system characterizes with
high sensitivity to initial condition and generates complex chaotic attractor. The novel
hyper-chaotic system is suitable to be used in numerous applications and could be em-
ployed in information encryption, because of the big group of keys that can be generated
from the system. In the future, the novel hyper-chaotic system can be adopted in the
image processing, artificial intelligence and other computer science fields, also can merge
the proposed system with other techniques like watermark or steganography techniques.
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