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Abstract. Recent trends in IoT advances pose new challenges to the research commu-
nity from hardware and software perspectives. Among them, the vitals ones are that these
devices should be lightweight, small in size, low memory footprint, running on Internet
of Things based operating systems, and long lasting. On the other hand, these devices
expected to process increasingly complex problems and hence need more computational
power. However, computational power comes at the price of higher energy consumption
which is a limiting factor in the context. In this paper, we model an energy efficient sys-
tem that consists of sensors with no processing capabilities and transmit data at regular
intervals to a computing device supported by discrete speed levels. We study the power
efficiency of the embedded processing device that ensures all accepted tasks are processed
accordingly by their respective deadlines. Our analysis shows that energy savings are
significant when the overall system utilization is low.
Keywords: IoT, Power efficient scheduling, Energy savings, Fixed priority systems,
Real-time systems

1. Introduction. With increased penetration of Internet of Things (IoT) devices into all
fabrics of our daily lives, a fraction of power saving contributes significantly to the reduc-
tion in overall energy consumption. As per IoT architecture, several technological layers
starting from the sensors, to a middle layer computing device, to sophisticated servers
exist. The processing power of these devices increases in aforementioned order as well as
the power consumptions of such devices. IoT devices by nature are low power devices and
minimizing power consumption of such systems is the key factor [1-3]. It is forecasted that
by 2020 the number of IoT devices connected to the Internet is expected to be 50 billion
while there were 25 billion devices in 2015 [4]. Today, these devices facilitate industrial
automation, smart cities, environment sensing and eco systems, running on various data
rates, and handling both types of real-time and non-real-time traffic. IoT has become
the de-facto standards in smart homes, wearable, smart infrastructure, street lights, ve-
hicles, and smart shoes, etc. These sensors make the bottom layer of the popular 3-layers
structure as per IoT reference architecture [4,5] and are normally battery operated. Such
sensors are mainly intended to perform a single specific task like monitoring infrastructure
health or temperature of a produce, etc. For instance, IoT based sensors are used in range
of domains ranging from monitoring vaccine temperature to food quality to infrastructure
health and often installed at locations where power socket might not be an option. These
devices are mission oriented or expected to operate for longer duration and hence are
battery operated. In many applications that change very slowly such as humidity, sensors
are used to transmit data after regular intervals and processed by a system that offer
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extra functionality in comparison such as embedded systems. Similarly, IoT data streams
provide the opportunities for real-time analytics through high end servers.
A typical embedded system generally includes all of the memory and peripheral in-

terfaces supported by a uni-processor system. Due to simple implementation, many ad-
vanced features such as file or memory management are not supported in such system
due to memory and power constraints. An embedded control system can be used as a
middle layer in IoT architecture but again continuous power supply at such places can
also be a challenge. Thus, deploying a higher-level operating system on such devices is
not an option. As an alternative, Linux can be tailored to run on such devices but even
then cannot run on 8-16 bit MCUs [3]. Even 32-bit systems are unable to run Linux
smoothly due to insufficient RAM for Linux kernel. On the other hand, these devices do
support many real-time applications and might need java virtual machine, etc. and hence
typically need 32-64 bits hardware. Consequently, such devices run on some flavor of a
real-time operating system (RTOS). For instance, networked embedded systems require
a 32-bit processor that can smoothly run RTOS [4,5].
On the one hand, due to ever increasing complexity of applications, these devices are

expected to handle a larger number of tasks, while on the other hand, these devices need
to operate for longer hours and hence trades performance for energy consumption. Con-
sidering these constraints and the rise of IoT sensors, embedded system designers focus
on reducing power consumptions of the overall system. Today, latest microprocessors
installed in such devices are capable of operating at various speed level to maintain a
balance between energy and system responsiveness. An ideal embedded system should
support continuous levels of speed levels but due to practical considerations, only a set of
discrete levels is supported. Consequently, with minor adjustments, theoretical speed lev-
els are mapped to the corresponding discrete speed level supported by the hardware. For
real-time systems, a higher discrete speed is desirable from responsiveness perspectives,
but even lower speed is equally good as long as task deadlines are respected.
With growing popularity of IoT, many embedded control systems follow cloud first ar-

chitecture, where these device nodes perform data collection or respond to remote control
commands and hence connected to the Internet (using Google’s Cloud IoT Core, etc.),
where complex analysis is made using cloud/fog or edge computing etc. In this study,
primary focus is made on the embedded control system for reducing their energy consump-
tions. Our system supports real-time tasks where tasks have strict deadlines associated
and hence task deadline must be respected under any possible scenario [6-8].
We apply real-time scheduling theory, model a system that operates at 9 discrete levels,

and handle n number of independent period tasks where each task demands required
CPU slots for task completion before its next invocation. Priority assigned to a task
remains fixed throughout the operation of a given task set. For power efficiency, we use the
formulation derived in [9-11] between power consumption and system speed. To guarantee
the timing requirements of individual tasks, we apply real-time scheduling theory [6-
8,12-24] for static priority system under rate-monotonic scheduling algorithm. The only
difference in our work and previous solutions is that we consider the output of a sensor
as a periodic event. We then extend an existing feasibility test to determine a suitable
CPU speed such that the energy consumption of the embedded system is reduced while
the deadlines set to be sensors are respected as well. We study the hypothetical scenario
of a hardware system operating on nine speed levels and integrate with schedulability
theory for real-time systems. The lowest speed of our system in 200 MHz needs 1.18
volts, tentatively. To lower the overall power consumptions of such systems, we establish
an algorithm based on latest scheduling technique and dynamic voltage scaling which
enables adjusting system speed on the fly and applicable to real-time systems [12,13].
Remaining part of this paper has been divided into 5 sections. In Section 2, we provide

related work, while Section 3 describes the hardware model supporting discrete speed
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levels as well the nature of the tasks to be processed. Details of the algorithm are sketched
in Section 4. Experimental results are discussed in Section 5 and conclusions are drawn
in Section 6.

2. Related Work. As per IoT reference architecture [1-3], the lowest layer comprises
wireless sensor networks (WSNs) with an assortment of sensor/actuator nodes [3,4,26-29].
In plant automation scenario, sensors send data every few seconds for further processing.
In many domains, sensors record various types of data (task) and transmit to the middle
layer that process these tasks. For analysis purposes, the results of middle layers are
communicated to the cloud/fog for further processing. Due to size and power constraints,
these devices run on simple operating systems such as TinyOS, FreeRTOS, or LiteOS that
provided limited functionality.

Attempts have been made in lowering the power consumption of micro-processors by
exploiting the feature of adjusting system speed at run time. These applications include
both non-real-time [25] and real-time systems [5-20]. Weiser et al. [25] used the approach
of busy system to increase system speed and reduce it when the system is idle. The
work in [25] is based on dividing time into intervals to set speed for upcoming interval
based on recent CPU utilization. Though promising for non-real-time applications, recent
usage of the systems cannot predict the actual performance requirements of the task and
hence invalid for real-time systems. A voltage scaling technique was adopted for real-time
systems under both static and dynamic priority systems in [9,21]. Later, authors in [18]
extended the work for multi-core systems.

In [1], energy efficient scheduling for IoT devices was discussed in detail and exchanges
of local information between neighboring nodes as well as global server that maintain the
overall network state were highlighted in [2]. In this paper, we model sensors as periodic
task where each sensor (task) sends data to be processed by an embedded system that
has the ability to adjust system speed in nine discrete levels. Our solution ensures the
each task (sensor data) is processed before the same sensor resends another set of data
for processing. The classic real-time scheduling theory has been applied while assigning
priorities to individual tasks.

3. System Model. Currently, one of the most effective means for reducing power con-
sumption of CMOS technologies in computing systems is dynamic voltage scaling (DVS).
The relation between voltage and frequency offers the foundation for DVS. Energy of
CMOS circuitry is expressed as [9-12]:

E = P × t (1)

where E denotes energy consumption, and P is the average power for running the proces-
sor for t units of time. Due to space limitation, we skip some relevant details but reader
may see [8] for better understandings. The dominant capacitive switching applicable in
this context can be written as follows:

P = γλV 2F (2)

where transition activity dependent parameter is represented by γ, switched capacitance
is denoted by λ, V is the supply voltage, while F denotes the system speed. It is worth
noting that V is directly proportional to F and (1) and (2) show that lowering system
speed results in significant energy reduction. Equation (2) provides the foundation for
DVS [9]. Assuming g(F (t)) is a function of F , the power consumption P of a processor
running at speed F in interval [t0, t1] can also be expressed as:

P =

∫ t1

t0

g(F (t))dt (3)
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An ideally processor should be able to run at continuous speed levels according to
(3) but it is impractical due to fundamental physics constraints. Latest processors only
operate at a few discrete speed levels. In this work, we assume our system supports nine
discrete speed level where 1.0 is the maximum, and 0.2 is the lowest speed with a step
size on 0.1.
We now introduce out task model executed by the embedded system. The system

supporting handling data from n number of IoT devices and each IoT device is a task
that generates the request for CPU slot after fixed intervals. We model this task as a hard
periodic task τi. In worst case, all tasks arrive simultaneously, and each task presents ei
units of system processor time which is the worst case computation demand. All tasks
are independent and pre-emptible while task deadline di is equal to task period pi. This
assumption ensures that each task receives its required time slots before another job of
the same task reappears. The scheduling algorithm used is preemptive and assigns task
priorities based on tasks periods where highest priority task has the smallest task period.
We use the model presented in Table 1 of Transemmta’s Cursoe processor extracted

from [5,29,30] which supports 10 discrete levels. We extrapolate the first row of Table
1 from the data given in [5,29,30] to keep the system up and the minimum speed to
entertain critical systems tasks/interrupts is 200 MHz. For each voltage level, there is
a corresponding CPU speed, i.e., system speed and supply voltage are almost directly
proportional to each other and faster system speed is obtained at the price of higher
operating voltage. In other words, a task that takes 10 ms while executing by the system
at speed 500 MHz will just take 5 ms when run of 1 GHz. However, there is a price
associated with higher speed in terms of power consumption, i.e., the system roughly
consumption 8 times more are 1 GHz than running at 500 MHz.

Table 1. Characteristics of Transemmta’s Cursoe processor [5,29,30]

Voltage Frequency Power
1.18 200 1.20
1.20 300 1.30
1.23 400 1.80
1.35 500 2.73
1.53 600 4.21
1.75 700 6.43
2.00 800 9.60
2.35 900 14.91
2.80 1000 23.52

4. Power Efficient Schduling. For scheduling the task set, we use RM algorithm and
for schedulability analysis we follow exact condition. This approach results in higher
system utilization as long as the task set is schedulable on the system. In addition, we
incorporate the power efficiency component into feasibility analysis as discussed in [12]
for reducing the overall energy consumption. We now use the model developed in Section
3 and integrate with real-time scheduling theory for enabling a system to run on the
most appropriate frequency so that the deadlines of the tasks are never compromised. To
maintain the critical components such as timer up and keep system active, the CPU runs
at 200 MHz. To schedule n periodic task on a single processors system, rate monotonic
scheduling algorithm is the optimal policy [3]. Each task is assigned a unique priority by
rate monotonic scheduling algorithm which does not change at all on run time. Checking
schedulability of a task is subject to feasibility analysis. A task τi is schedule on a single-
CPU system when:
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min
t∈Si

wi(t)

t
≤ 1 (4)

where wi(t) is collective system demand of a task τi at time t, and Si is the set of scheduling
points for τi that depends on the task period of all higher priority tasks and task of τi
itself. A task is schedulable if and only if (4) holds.

Recently authors in [8] introduced a feasibility test that test checks task feasibility by
starting feasibility analysis with largest point in set Si for task τi.

Theorem 4.1. [8]: A real-time system consisting of n periodic tasks {τ1, . . . , τn}, τi can
be feasibly scheduled on uni-processor system for all tasks phrasings under rate monotonic
scheduling algorithm iff:

max1≤i≤n

{
min
t∈Oi

wi(t)

t

}
≤ 1 (5)

Here Oi is the set of scheduling points ordered in descending order in contrast to Si.
Static speed is possible to be obtained in first place for the task set before deploying the
task set using sufficient condition for RM schedulability [12] but such arrangements can
possibly run the system at higher speed. The system speed can be further lowered at run
time by utilizing the slack time due to early completion of a task [12] but considerable CPU
time can be wasted on schedulability analysis instead of processing the actual computation
demands of tasks. It is worth mentioning that many scheduling algorithms have been used
in real-time system, but we use the ones proposed in [8] for being an efficient algorithm.
Inequality (5) determines task schedulability but does not help lower the speed. For
calculating desirable system speed, the approaches derived in [18] are applicable in this
context.

Our algorithm considers the system speed as discussed in [18,23,30] but extends Theo-
rem 4.1 for lowering the system speed. Based on our system model, speed Fi appropriate
for a task τi is extracted from a range of nine speed level, i.e., 0.2 ≤ Fi ≤ 1. We assume
that the value of Fi is rounded to a single decimal number so that it matches the underly-
ing hardware supported speed levels. In our system on n tasks, a periodic task τi can be
feasibly scheduled for all tasks phrasings using rate monotonic scheduling algorithm iff:

max1≤i≤n

{
min
t∈Oi

wi(t)

t

}
≤ Fi

Fm

(6)

where Fm = 1, i.e., maximum system speed is 1.0 and hence limits the utilization by
100%. To obtain the desired speed Fi, system schedulability of an individual task is
tested at all scheduling points one by one in set Oi and the first point that answers the
schedulability of the task concludes the test with suitable theoretical speed. Inequality
(6) becomes exactly like Inequality (5) when running at maximum speed of 1.0. We use
the floor function on Fi to make it appropriate for an actual speed level supported by
the hardware. This mechanism has an associated disadvantage that the system energy
consumption might increase but at the same time, ensures the timing constraints for the
task deadline, which cannot be compromised in hard real-time system and hence the focus
of this work.

5. Experimental Results. In this section, we discuss our experimental results for the
task and system model discussed in Section 3. We generated task sets of different sizes
and each value plotted is obtained after 400 iterations. The microprocessor model used for
analysis purposed is sketched in Table 1. Run the system at various utilization in range
of [69% to 99%]. We generated synthetic task set of size 2, 4, . . . , 20 where each task is
a sensor data. Figure 1 shows the energy consumption of the system for n tasks when
no DVS scheme is used versus a system using DVS scheme. The utilization of task set
varies from 69% to 99%. To derive values for task periods, we used uniform distribution
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Figure 1. Normalized energy savings under varied system utilizations

and the same distribution was also used for extracting task computation times. For each
task set, we run our simulation in Matlab while kept task priorities static. Computation
cost of (4) against (5) is available in [8] and similar studies are made in [12,18,23]. In
our experiment, the worst case execution times for tasks have variation of 5-10%, applied
randomly. We represent (5) by No-DVS-Scheme and (6) with DVS-Scheme-U , where U
is system utilization. In Figure 1, No-DVS-Scheme consumes 100% energy as the system
is running at maximum speed in absence of DVS. It can be seen in Figure 1 that energy
saving is higher for the smaller task set and increases as the task set grows. We show
normalized values in Figure 1. First, we kept system utilization as low as 69% in Figure
1 that is shown by DVS-Scheme-69. With such utilization, this behavior in Figure 1 is
due to the fact that the system is preemptive, and the workload is 69% which can be
statistically scheduled for all tasks successfully. With increased task set size, more tasks
were in competition for the CPU slots and to respect the deadlines. Due to this scenario,
the system had to increase the operating speed. The increase in speed directly influenced
higher power consumptions. Though at higher speed, a task now takes less time but since
the role of voltage is quadratic, more energy was consumed.
The effect of utilization also affects the energy consumption as when system is heavily

utilized, the opportunities for running the system at lower speed are rare. It can be seen
from Figure 1 that under the same task set size, the corresponding energy reduction be-
comes more insignificant with higher utilization for DVS-Scheme. We changed the system
utilization from 69% to 100% in Figure 1, with an increase of 10%, respectively. In Fig-
ure 1, the energy consumption with DVS-Scheme-69 is low as the system schedulability
is determined faster by analyzing only a few points in the set of scheduling points and
due to presence of slack, the CPU speed is minimum. It is worth noting that we plotted
only the energy consumptions of those task sets that were declared schedulable according
to rate monotonic scheduling while rest of the infeasible task sets were discarded. The
energy saving decreased in DVS-Scheme-79, DVS-Scheme-89 and DVS-Scheme-99, where
DVS-Scheme-99 was the worst case. DVS-Scheme-99 represents the values for the task
set demanding 99% system utilization and DVS-Scheme has to check the schedulability
of each task with (6) in descending order of points. This situation is understandable as
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the system is fully utilized and the opportunities to lower the system speed levels are
minimum and hence energy savings are insignificant.

6. Conclusion. Power consumptions of embedded systems capable of handling sensors
data with a single processor system were discussed. The hardware studied in the work
supported 9 discrete levels and a periodic task set was assumed that had fixed priority.
Rate monotonic scheduling policy was used for scheduling tasks on the processor. Sensors
were modeled as periodic tasks that generate computation workload after regular intervals.
The computation demand was then transmitted to an embedded system that processes
the data accordingly. It was noted that the energy gains were promising when system
was underutilized and becomes insignificant when system utilization is very high (99%).
The study was limited to middle layer only and as future work, we are intended to study
energy aware scheduling in cloud environment when data is partially offloaded to high-end
servers for further processing.
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