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Abstract. To address the issue of high false positive rate resulted from ADAS’s inability
to effectively identify the lane change behavior, lateral velocity, steering wheel angle and
yaw rate among other parameters during lane change were acquired through a drive test
conducted on an expressway. The collected data were processed by unscented Kalman
filtering, normalization and K means clustering for establishing a lane change recognition
model based on Hopfield neural network. To further improve the recognition accuracy of
the model, the PSO (Particle Swarm Optimization) algorithm is used to optimize the
neural network, and the recognition accuracy of the optimized model has reached 91%,
which is in compliance with the requirements of ADAS system.
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1. Foreword. Lane change maneuver is one of the most important driving behaviors.
Unreasonable lane changes can cause serious traffic conflict and consequent traffic delays
[1]. According to previous research, more than 90% of traffic accidents are caused by
human factors, and lane changes are the main factor. Research data indicate that the
traffic accidents resulted from human factors account for more than 70% of all expressway
traffic accidents resulted from lane change [2].

Scholars in China and abroad have conducted a great deal of research on lane change
behaviors. Bocklisch et al. used adaptive fuzzy pattern classification to detect the lane
change intention in car driving [3]. Woo et al. proposed a new detection method to
predict a vehicle’s trajectory and used it for detecting lane changes of surrounding vehicles
[4]. Kuge et al. built a lane change recognition model based on hidden Markov theory,
which can be used to recognize regular lane change, dangerous lane change and lane
retaining behaviors according to steering behavioral parameters [5]. Mccall et al. built a
sparse Bayesian learning-based lane change intention recognition system with the inputs of
transverse vehicular deviation and driver’s head posture [6]. Liu and Pentland developed
a hidden Markov theory-based lane change intention model with the inputs of transverse
distance, steering wheel turn angle and yaw angular velocity [7]. Urun et al. developed a
neural network and SVM to predict the driver’s behavior according to such parameters as
transverse acceleration, time of collision, steering wheel turn angle and distance between
lane lines [8]. Yuan et al. built a lane change intention recognition model based on visual
characteristics of the driver [9]. Ma et al. developed a BP neural network-based lane
change prediction model by using head posture, vehicle motion parameters as well as
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spacing of vehicles [10]. Tang et al. built a lane changing predictor based on adaptive
fuzzy neural network to predict steering angles [1].
Compared with the above several types of recognition models, neural network has the

advantages of good applicability and fault tolerance, even if an error sample is encountered
during training, it can be corrected as the training process progresses. Hopfield neural
network is an all connection type neural network, which has a leaning capability and
learning speed stronger and higher than traditional neural networks.

2. Building of Lane Change Recognition Model.

2.1. Hopfield neural network. Hopfield neural network was first proposed by Hopfield
in 1982 [11]. It runs in kinetic mode. Beginning from its initial state, the neural network
evolves gradually in the energy decrementing direction gradually until the neural network
reaches a steady state, and then the neural network outputs values in the steady state.
In this paper, the discrete Hopfield neural network is used. The output of the discrete
Hopfield neural network is only 1 and −1, respectively representing the neural network in
active and suppressed states. Structure of discrete Hopfield Neural Network is as shown
in Figure 1.

Figure 1. Structure of Hopfield neural network

In Figure 1, Layer 1 is used as the input layer of the neural network, only used for value
transmission but not for calculation. Layer 2 includes neurone, used for processing in-
putted information and outputting calculated value after processed by nonlinear function
f . Computing formula of Layer 2 is as follows:

pj =
∑

wijyi + xj (1)

where xj stands for external input. Computation formula of yj is given below:{
yj = 1, uj ≥ aj
yj = −1, uj < aj

(2)

Selecting yj(t) to indicate the status value of the jth nuerone at the moment t, then the
status of the moment next to this point can be figured out by using Formulas (3) and (4):

yj(t+ 1) = f [uj(t)] =

{
1, uj(t) ≥ 0
−1, uj(t) < 0

(3)

uj(t) =
m∑
i=1

wijyj(t) + xj − aj (4)
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In this paper, the whole network evolves in the asynchronous working mode of Hopfield
neural network. During evolution, the neural network first initializes the entire network,
and then selects a neurone uj(t) on a random basis for computing the output value vj(t+1)
of that neurone, at which point the state of all other neural units in the neural network
remains unchanged. And then one has to make a judgment as to whether its state no
longer changes beginning from a certain moment. If the conditions are satisfied, the
computation should be ended and the state of the neural network at this moment shall
be outputted. If any of the conditions is not satisfied, then a neural unit shall be selected
and computed again.

2.2. Acquisition of input parameters. This paper chooses a section of expressway
(G65) near Xi’an City for the test. The expressway is a two-way four-lane road with
a central separation zone. The traffic volume of this section is about 1500-2000 vehi-
cles/hour, and the frequency of lane change is higher. In this paper, 15 drivers were
selected to complete the real-time test on the highway. The average age of the driver was
41 and the average driving age was 8 years.

The parameters related to the lane change acquired during lane change include: dri-
ver’s eye moving parameter, heat poster parameter, steering wheel turning parameter,
automobile body transverse motion parameter and longitudinal motion parameter, etc.
In this paper, transverse velocity, steering wheel turn angle and yaw angular velocity were
selected as the input parameters for the neural network model.

2.3. Filtering of input parameters. Traditional Kalman filters are linear filters, which
can easily introduce linear error in the face of complicated non-linear issues. In this pa-
per, unscented Kalman filter [12] is used for denoising and filtering treatment of the
transverse velocity, steering wheel turn angle and yaw angular velocity acquired. Un-
scented Kalman filtering gives up linear treatment of the non-linear functions, and adopts
unscented transformation to solve the issue of covariance non-linear transmission. MAT-
LAB Kalman filtering toolkit is used for data filtering and smoothing. The results are
shown in Figures 2, 3, and 4.

It can be known from Figures 2, 3 and 4 that after the unscented Kalman filtering, noises
in the data are removed to the maximum extent while the parameter motion tendency is
perfectly retained.

Figure 2. Transverse velocity filtering
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Figure 3. Steering wheel turn angle filtering

Figure 4. Yaw angular velocity filtering

2.4. Normalization. The transverse velocities acquired mainly vary within the range of
−5m/s ∼ 5m/s, the steering wheel turn angle varies in the range of −60◦ ∼ 60◦, and the
yaw angular velocity mainly varies within the range of −2◦/s ∼ 2◦/s. For better reflection
of data characteristics, normalization is required when data is input. The normalization
range selected in this paper is [0, 1]. The normalization formula is as follows:

xi =
xi − xmin

xmax − xmin

(5)

where xmin refers to the minimum value in the data, and xmax refers to the maximum
value in the data.
The normalized processing results are as follows:
Original transverse velocity data: (1.11, 0.73, 0.40, 0.09, −0.16, −0.39, −0.57, −0.71,

−0.81, −0.86, −0.87, −0.84, −0.77, −0.65, −0.50)
Data after normalization treatment: (1, 0.88, 0.77, 0.68, 0.59, 0.52, 0.47, 0.42, 0.39,

0.38, 0.37, 0.38, 0.40, 0.44, 0.49)
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Original steering wheel turn angle data: (2.97, 4.46, 4.46, 2.97, 2.97, 2.97, 1.48, 1.48,
2.97, 2.97, 2.97, 4.46, 4.46, 5.95, 5.95)

Data after normalization treatment: (0.25, 0.50, 0.50, 0.25, 0.25, 0.25, 0, 0, 0.25, 0.2,
0.25, 0.50, 0.50, 0.74, 0.74)

Original yaw angular velocity data: (−1.47, −0.56, −0.79, 0.23, −0.88, −0.69, −0.43,
−0.85, 0.08, −0.55, −0.70, −0.48, −0.48, −0.85, −0.62)

Data after normalization treatment: (0, 0.53, 0.40, 1, 0.34, 0.45, 0.61, 0.36, 0.911, 0.541,
0.45, 0.58, 0.58, 0.36, 0.50)

2.5. K means clustering. Sampling frequency of the sensor acquisition system is 10Hz,
at which 30 transverse velocity, steering wheel turn angle and yaw angular velocity data
are obtained within 1s. If these are directly inputted into the neural network, it will
not only increase the neural network computing time, but the large number of redundant
data contained in the data will cause over-fitting of the neural network. In this paper, K
means clustering method is adopted for clustering of the data, and the center points after
clustering are selected as the input data.

Data of steering wheel turn angle, transverse velocity and transverse distance are di-
vided into two categories by using the K means clustering approach. Since the charac-
terization parameter inputs are gradually varied in a certain pattern, Serial Numbers 5
and 9 are respectively selected and used as the initial clustering centers when selecting
the initial clustering centers, as shown in Table 1.

Table 1. Initial clustering center

Characterization parameter input
Clustering
1 2

Transverse velocity 0.46 0.31
Steering wheel turn angle 8.92 7.15
Yaw angular velocity −0.50 −0.51

The clustering centers obtained as a result of K means clustering of the data by using
K means function in the MATLAB software are as shown in Table 2.

Table 2. Final clustering center

Characterization parameter input
Clustering
1 2

Transverse velocity 0.27 0.47
Steering wheel turn angle 6.81 8.79
Yaw angular velocity −1.21 −0.57

The final clustering centers are used as the input samples, redundant data in the data
have been removed, while main information of the data is retained.

2.6. Model training. Some 545 sets of samples are selected from the test data, of which
218 sets are lane change samples, accounting for 40% of all samples, and 327 are lane
retaining samples, accounting for 60% of all samples. Of the 545 sets of samples, 445 sets
of data are selected on a random basis and used for neural network model training, with
the remaining 100 sets used for neural network model testing.

Vehicle over lane line is the time point that can cause a traffic conflict. Therefore, the
lane change recognition system needs to identify the vehicle’s state of motion before it
drives over the lane line. It can be known from a statistics of the vehicle line crossing
time in the lane change samples that the average line crossing time of the vehicles during
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lane change is 3.1s. Within a period of 0.3s ∼ 3.0s, the recognition accuracy of the neural
network under different time windows is respectively figured out based on a time interval
of 0.3s.
It can be known from Table 3 that beginning from 0.3s, recognition accuracy of the

neural network persistently increases as the time window increases. At the time window
of 2.1s, the recognition accuracy of the neural model exceeds 85%. Thereafter, as the
time window increases, the recognition accuracy of the neural network model fluctuates
around 85%. This is because as the time window increases, a large amount of redundant
information is contained in the information inputted into the model, which affects the
recognition effect of the neural network model. At this point, the neural network model has
the best recognition effect at the time window of 1.5s. However, the recognition accuracy
of the neural network model is still on the low side, and cannot meet the requirements of
active safety system.

Table 3. Recognition accuracy under different time windows

Time window (s) 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Recognition accuracy (%) 69 73 78 82 82 83 86 87 83 88

3. Optimization of Neural Network Model.

3.1. PSO algorithm. Local search algorithm is used for the neural network parameters
during training, which can easily fall into local minimal values when solving sophisticated
non-linear issues. Therefore, this paper employs PSO algorithm to optimize the neural
network parameters. Optimization process by using PSO algorithm is to first initialize
a set of particles in the optimization space. Each particle represents a set of potential
optimal parameters of the neural network, and each particle contains three characteristics,
namely, velocity, position and fitness value, where the particle is evaluated based on
magnitude of the particle fitness value. Individual particle position is updated by using
the particle extreme value Pbest and the group extreme value Gbest in the space, of which
the particle extreme value Pbest represents the best fitness position obtained during the
movement of the particle, and the group extreme value Gbest represents the best fitness
positions obtained during the movement of all particles. Through constant update of the
group position, the particle extreme value Pbest and the group extreme value Gbest are
also persistently recalculated, until the best fitness position in the space is ultimately
obtained. The flow of the PSO algorithm to optimize the neural network model is shown
in Figure 5.
After optimization of Hopfield neural network by using PSO algorithm, recognition

accuracy of the neural network model is figured out under different time windows.
It can be known from Table 4 that recognition accuracies of the neural network op-

timized by using PSO algorithm are generally improved. At the time window of 1.5s,
recognition accuracy of the neural network model has reached 90% or higher. Meanwhile,
the time window length is also shortened than 2.1s before the optimization. Recognition
accuracy of the optimized neural network model now meets the requirements of the active
safety system.

Table 4. Recognition accuracy under different time windows after optimization

Time window (s) 0.3 0.6 0.9 1.2 1.5 1.8 2.1 2.4 2.7 3.0
Recognition accuracy (%) 71 77 83 88 91 90 91 93 89 90
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Figure 5. Process flow chart for optimizing neural network model by using
PSO algorithm

3.2. Model performance analysis. Recognition accuracy is a common indicator for
evaluating the recognition effect. Recognition accuracy is used for calculating the correct
percentage of recognition data samples in the total data samples. In the above part
of the text, the recognition effect of the neural network model is evaluated against the
recognition accuracy. However, recognition accuracy cannot give an overall indication of
the recognition performance of the model, because recognition accuracy cannot reflect the
sources of wrong samples as well as the distribution of the wrong samples between in the
two states of lane change and lane retaining. With respect to the above circumstances, this
paper introduces the two evaluation indicators of a true positive rate and false positive rate
to evaluate the classified effects of the neural network. Receiver Operating Characteristic
(ROC) curve can be used for an apparent analysis of the equilibrium relationship between
true positive rate and false positive rate. In the ROC curve, the false positive rate is shown
as the x-axis and the true positive rate is shown as the y-axis in the coordinates. See
Figure 6 for the ROC curve.

The recognition effect of the model is then quantitatively evaluated according to the
Area Under the ROC Curve (AUC), which shows that the more AUC approaches to 1,
the better the recognition effect of the model is. In Figure 6, AUC is 0.9252, indicating
that Hopfield neural network model gives an excellent recognition effect no matter it is
used for recognizing the lane change state or lane retaining state.

4. Conclusion. This paper puts forth a Hopfield neural network-based lane change be-
havior recognition model to address the lack of effective vehicular lane change behavior
recognition in ADAS system. Transverse velocity, steering wheel turn angle and yaw
angular speed of vehicles under different states of motion are acquired through real auto-
mobile driving test on an expressway. Redundant data in the acquired data are removed
through data normalization and K means clustering, whereby main information is extract-
ed. After the Hopfield neural network parameters are optimized by using PSO algorithm,
recognition accuracy of the model has reached 91% at the time window of 1.5s, living up
to the requirements of the driver assistant system. It can be known through evaluation
of the performance of the neural network model by using an ROC curve that when AUC
is 0.9252, recognition effect of the neural network model is quite apparent.



724 C. ZHAO AND J. LIU

Figure 6. ROC curve
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