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Abstract. In order to develop a personalized medical device for a human auditory
periphery such as middle-ear prosthesis or to analyze cochlear structure using finite el-
ement model, it is important to obtain patient’s cochlear geometry. In this study, the
cochlear geometry was obtained from each person’s computed tomography (CT) images.
In addition, the data augmentation was performed to prevent overfitting. Furthermore,
the faster region convolutional neural network (Faster R-CNN) was used to detect the
cochlear region from the µCT images more effectively and automatically. Results showed
that Faster R-CNN method could obtain the cochlear regions from the µCT images with
82.11% precision and 93.13% sensitivity.
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1. Introduction. Human’s ear consists of three parts, which are outer ear, middle ear
and inner ear. Among these components, the cochlea is the most significant organ to
hear a sound because sound frequency can be distinguished in the cochlea. Therefore,
there have been many studies for the human cochlea [1-4]. However, due to its location
which is difficult for researcher to access as well as its complex geometry, it was hard to
fully understand the hearing mechanism occurring in the cochlea. Therefore, obtaining
the real geometry is a significant process for better understanding of the mechanism.
Unfortunately, the process to obtain the region of interest (ROI) of cochlea from the micro
computed tomography (µCT) images is considered to be too boring and time-consuming
works.

To construct a three-dimensional geometry of the cochlea from µCT images, the inter-
ested object should be segmented from each image and then stacked. In this process, the
intensity difference between bone and the other components of a cochlea makes the seg-
mentation of the bone easily. There are several methods to segment the ROI. The most
famous method is Gauss segmentation algorithm [5]. The key concept of this method
is shrink wrapping of the ROI. In other words, the contour lines drawn manually by re-
searchers were shrunk to the surface of the nearest bone to the contour line. However, the
caveat of this method is that the processes should be mostly performed manually by re-
searchers. The other method is an automated or semi-automated contouring procedures.
For example, simple threshold method [6], snakes method [7,8], watershed method [9,10],
and morphological approach method [11] are using the automated or semi-automated con-
touring procedures. In these methods, the contour lines can be automatically drawn, and
shrunk or expanded to the surface of the nearest ROI within the boundary designated
by researcher. However, these methods also need researchers’ manual endeavors for some
procedures such as designating the ROI.
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In order to develop an automatic procedure for generating ROIs, a machine should
obtain the information about the location, shape, size, etc., of the bone. In the case of
human, this information can be obtained heuristically. In this study, however, we aim to
train the machine taking the information through the faster region convolutional neural
network (Faster R-CNN), namely, deep learning. Eventually, the trained machine will be
able to automatically segment the interested ROIs from µCT images.

2. Study Methods. The object detection is the most important process in the computer-
vision field using deep learning technique. Through the detection process, we can deter-
mine not only if the interested object exists in an image, but also the probability (rep-
resented by percentage) if the detected object in an image identifies with what we are
interested. In other words, the object detection is the algorithm to find ROIs with the
position as well as the probability for the object to be identified with what we need.
When an input image is given, the object-detection-process is carried out by localization

and classification in all the meaningful regions. For example, when an image with cat
and dog is given as an input, drawing a bounding box on each of the cat and dog is called
localization. On the other hand, the categorization of the cat image into the cat category
and the dog image into the dog category, respectively, are called classification.
In this study, we used ‘Faster R-CNN (region-convolutional neural network)’ for object

detection process. The Faster R-CNN is a combination of CNN and region proposal

network. The CNN is a network which obtains the feature map from an original image,
and it has the spatial information of the image as well. This is a strength of the CNN
in comparison with ANN which can obtain the feature map from an original image, but
cannot have the spatial information [12].
On the other hand, ‘region proposal’ (see Figure 1) represents to suggest any region(s)

from an original image to users. At the moment, the suggested region(s) can be an
interested region, but or not. The region proposal network is a network which can do
the ‘region proposal’ through the training (see Figure 2). Details for the training can be
found in Ren et al. [13].

(a) (b)

Figure 1. The example of region proposal method: (a) sliding window
detector approach, and (b) selective search algorithm

We investigated the feasibility of using Faster R-CNN for detection of the cochlea from
µCT images. The Faster R-CNN was implemented by ‘Faster R-CNN inception resnet
v2’ provided by the Tensorflow. It should be noted that ‘Faster R-CNN inception resnet
v2’ has the advantages to detect an interested object from an original image (i.e., high
mean average precision) in spite of the expensive calculation.
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Figure 2. The schematic diagram of the region proposal network in the
Faster R-CNN

3. Experimental Materials.

3.1. Image datasets. The used image datasets in this study were obtained from the
micro-CT scanner developed by SCANCO Medical AG (www.scanco.ch). The visibility
of CT is determined by the photon energy, the intensity of the X-ray and the integration
time. This scanner has high maximum X-ray intensity, which means CT images have
good signal-to-noise ratio and image clarity. In addition, the machine can perform high
resolution scans up to 2,048 × 2,048 pixels per image. When the specimen (human
temporal bone) is reduced to fit into the 21.5 mm diameter holder, we could obtain the
best resolution of 10.5 µm. The default scan length was about 12 mm in the depth
direction. These values in scan length could make approximately 1,140 slices at the 10.5
µm resolution [5]. We acquire 10 image datasets from the scan in this study.

3.2. Labeled region of interest (ROI). For both the training and test datasets, the
labeled ROI containing each cochlea was manually selected from the images (See Figure
3). The number of ROIs obtained from each dataset was approximately limited from 240
to 440. The average number of ROIs of ten datasets was 286. And, the resolution of the
ROIs is varied from 226× 220 to 300× 490, with an average of 308 × 342. The samples
of µCT images and the labeled cochlear images are shown in Figure 3.

Figure 3. The first row represents the examples of µCT images whereas
the second row shows the labeled ROI (cochlea) images.
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3.3. Data augmentation. In order to avoid an overfitting in the machine-learning train-
ing, we performed data augmentation by 1) varying the brightness, 2) rotating [14], 3)
upscaling/downscaling 4) adding noise [15], 5) distorting [16] and, 6) mirroring of images
(i.e., flip the image horizontally). At first, we changed the brightness of the images. The
brightness was varied by Equation (1):

Y =
Imax

φ
∗

(

X ∗ θ

Imax

)
1
γ

(1)

where X and Y mean the input and output images, respectively. The Imax represents the
maximum intensity. And, φ, θ, and γ describe the variables to control the brightness. In
this study, the φ and θ were fixed as 1 whereas the γ was varied from 1.4 to 0.6 to describe
the brightness and darkness. For example, the lower γ represents the darker image. The
rotational angle was varied from −10 degrees to 10 degrees, and the scaling factor was
changed from 95% to 105% with respect to the original image scale. Furthermore, in
order to add the noise, we used the Gaussian Noise [15] with average and variation as 5
and 70, respectively. The distortion used in this study has the same meaning with ‘elastic
deformations’ [16].
For the distortion, we had to generate a grid. A grid has the same size with an input

image and grid’s nodes have its own x and y position. Then, we changed the grid’s node by
adding randomly generated displacements, ∆x and ∆y. The displacements, ∆x and ∆y,
are generated through the following processes: 1) make the matrix which has the same
size with input images, 2) assign the random number between −1 to 1 to every element
of matrix, 3) to preserve shape information, apply the ‘Gaussian filter’ with the Gaussian
standard deviation, σ which is equal to 2 times of the height of the input image (i.e., the
length of the input image in the y axis), and 4) multiply the scaling factor, α, equal to 0.08
times of the height of the input image. Then, we mapped the input image to the changed
grid, which became the distorted images. By applying 13 different transformations, we
could obtain 13 times more image datasets than the original images. In this study, we
used 10 µCT datasets. After data augmentation, number of images becomes 37,000. The
80 percentages of the images were used for machine-learning training, and the remained
images were used for machine-learning test. The samples of the data augmentation are
shown in Figure 4.

Figure 4. The examples of data augmentation: (a) original images, (b)
brightness (γ = 1.4), (c) darkness (γ = 0.6), (d) upscaling, (e) rotation (10
degrees), (f) rotation (−10 degrees), (g) mirroring, (h) distortion, and (i)
adding noise
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Figure 5. The results of object detection: (a) µCT images, (b) ROI (s-
elected by researcher before machine-learning training), and (c) detected
image (automatically detected by computer after machine-learning train-
ing; yellow square)

4. Results and Discussion. Figures 5(a)-5(c) show the original µCT image, the select-
ed cochlear ROI by researcher before machine-learning training, and the automatically
detected cochlear ROI by Faster R-CNN, respectively. We quantitatively evaluate the
detection accuracy using ‘positive predictive value (= precision)’ and ‘sensitivity’. Those
two variables are defined as follows, respectively:

Precision =
number of True Positives

number of Ture Positives+ number of False Positives
(2)

Sensitivity =
number of True Positives

number of Ture Positives+ number of False Negatives
(3)

where True Positives, False Positives, False Negatives mean the cochlear region classified
as cochlea, the non-cochlear region classified as cochlea, and the cochlear region classified
as non-cochlea, respectively [15]. For example, the precision describes the probability if
the cochlea predicted by the machine is a real cochlea. On the other hand, the sensitivity
means the probability if the machine finds the cochlear image among all the real cochlear
images in the original images. In other words, if we obtain 100% sensitivity, the machine
can predict an image as the cochlea whenever the image has a real cochlea. If we have 80%
sensitivity, 8 images would be predicted to be a cochlea out of total 10 images having a real
cochlea. We could obtain the detected cochlear ROI (Figure 5(c)) with 82.11% precision
as well as with 93.13% sensitivity. Without the Faster R-CNN process, the cochlear
images were taken from the original CT images through very tiresome processes, which is
drawing contours manually along each ROI. Therefore, it took several days to obtain the
cochlear images. However, in the current study, we can detect the cochlear images within
30 minutes using the Faster R-CNN. It was proceeded by a Macbook Pro equipped with
2.9 GHz intel core i7 processor and 16 GB RAM.

5. Conclusion. We applied Faster R-CNN to object-detection process, which is se-
lecting of the ROIs from µCT images. To prevent overfitting caused by limited input
data, data augmentations were performed by varying the brightness, rotating, upscal-
ing/downscaling, adding noise, distorting, and mirroring images. We could obtain the
automatically selected cochlear ROI with 82.11% precision and 93.13% sensitivity. For
better performance, we will consider additional data augmentation with more new dataset-
s. Furthermore, whereas the current study is limited to detect the area in which we are
interested, we will obtain the contour along the interested area using morphological filter-

ing [11]. The obtained contours will be used to reconstruct the 3D cochlear structure, and
a super-resolution generative adversarial network will be helpful to increase the resolution
of the reconstructed 3D cochlear structure.
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