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Abstract. In this paper, the modified TS (Takagi-Sugeno) fuzzy model intelligent con-
trol for nonlinear uncertain system represented by a continuous TS model with bounded
disturbance via Lyapunov energy function is studied. By properly designing the con-
straints in optimization problem, a high frequency signal which is derived via Lyapunov
energy function is simultaneously introduced to stabilize the system. A numerical exam-
ple is given to illustrate the effectiveness of the proposed algorithm.
Keywords: Linearization, Uncertain system, Fuzzy model, Intelligent control

1. Introduction. There has been rapidly growing interest in Fuzzy Logic Control (FLC)
of nonlinear system in recent years. Various fuzzy models have been proposed in recent
years; see, for example ([1-7] and the reference therein). From [1-3], the TS (Takagi-
Sugeno) fuzzy model was firstly used to control systems by systematic control rules.
Then [4] provided the improvement of the control rules in stability analysis. Recently, [5-
7] extended the control rules in the practical application. Based on the previous research
results, the Takagi-Sugeno (TS) fuzzy model is used to model uncertain nonlinear systems.
Furthermore, we injected a high frequency signal to improve its performance. A rigorous
analysis of stability in a general nonlinear system with a dither control was given in [8].

Hence, this paper proposes an auxiliary of the controller injected into the uncertain
nonlinear system. In summary, the first section proposed a novel modified intelligent
fuzzy modeling framework based on the controller design of high frequency injection to
overcome the chaotic and uncertainty systems. Then we utilized the machine learning
algorithms and the third section is the modified fuzzy system for modeling an unknown
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nonlinear distributed parameter system. Section four aims at the example simulation and
conclusions are provided in Section five.

2. Problem Statement and Preliminaries. Consider an uncertain nonlinear system
represented by the following equation:

ẋ = f(x, u) + ∆f(x),

where x is the state, u is the input and ∆f(·) is the uncertainty. f(·) is a vector-valued
function which satisfies those assumptions of general continuity and boundedness given
in [8] as follows.
There exists an open set V in Euclidean n-space En, a closed set A ⊂ V and, for all

u in U and 0 < t < T , the following conditions hold: (I) f(x, t, U) is continuous in t
uniformly in x and u for all x in V ; (II) there exists a positive constant M such that norm
f(x, t, u) < M for all x in V ; (III) f(x, t, U) is continuous in (x, t) uniformly in u for all
x in A; and (IV) f(x, t, U) is continuous in u for all x in V .
Furthermore, the ith rule of TS fuzzy model is of the following form:

IF z1(t) is Mi1 and · · · and zk(t) is Mik

THEN ẋ(t) = (Ai +∆Ai)x(t) + (Bi +∆Bi)u(t). (1)

Then the overall fuzzy model with uncertainty can be rewritten as follows:

ẋ(t) =

g∑
i=1

sψ∑
ψ=1

sυ∑
υ=1

hi(z(t))λiψ(x(t))ηiυ(x(t)) {(Ai + Aiψ)x(t) + (Bi +Biυ)u(t)} . (2)

Notice that hi(z(t)), Aiψ and Biυ are known. However, λiψ(x(t)) and ηiυ(x(t)) are
unknown.
The concept of the Parallel-Distributed-Compensation (PDC) scheme is utilized to

design a fuzzy controller:

Rule i : IF z1(t) is Mi1 and · · · and zk(t) is Mik THEN u(t) = −Fix(t). (3)

The closed-loop form

ẋ(t) =

g∑
i=1

g∑
j=1

sψ∑
ψ=1

sυ∑
υ=1

eijψυ(z(t)) {Ai −BiFj + Aiψ −BiυFj}x(t), (4)

where
eijψυ(z(t)) = hi(z(t))hj(z(t))λiψ(x(t))ηiυ(x(t)). (5)

Lemma 2.1. [9] An uncertain system ẋ(t) = {A0 +D∆(t)E}x(t) (where D and E are
known real matrices which characterize the structure of the uncertainty

∆(t) = diag[ϑ1(t) ϑ2(t) · · · ϑq(t)] (6)

and
σi ≤ ϑi(t) ≤ δi, i = 1, 2, . . . , q) (7)

is quadratically stable if and only if the following conditions hold.

i) A0 +DOE is a stable matrix, ii)
∣∣∣∣E(sI − A0 −DOE)−1DQ

∣∣∣∣
∞ < 1. (8)

Let G be a matrix which has desired eigenvalues and it is independent of i, j and then
(2) can be rewritten as follows.

ẋ(t) = Gx(t) +

g∑
i=1

g∑
j=1

sψ∑
ψ=1

sυ∑
υ=1

eijψυ(z(t))∆Gijψυx(t)

= Gx(t) +

g∑
i=1

sψ∑
ψ=1

sυ∑
υ=1

eiiψυ(z(t))∆Giiψυx(t)
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+

g∑
i<j

sψ∑
ψ=1

sυ∑
υ=1

eijψυ(z(t))∆Tijψυx(t). (9)

Using the singular value decomposition technique, we obtain

∆Giiψυ = UiiψυSiiψυV
T
iiψυ ∆Tijψυ = UijψυSijψυV

T
ijψυ. (10)

Lemma 2.2. [9] The closed-loop uncertain fuzzy system F (C; 0) is quadratically stable if
and only if the following conditions hold

i) G+DOE is a stable matrix, ii)
∣∣∣∣∣∣E (

sI −G−DOE
)−1

DQ
∣∣∣∣∣∣

∞
≡ ρ < 1. (11)

3. TS Fuzzy Relaxed Model and Stability Analysis. An uncertain nonlinear system
with an added dither is normally called an uncertain dithered system, and it is described
by

ẋ = f(x, u, d) + ∆f(x). (12)

Notice that the dither signal is injected just in front of the nonlinearity of the uncertain
nonlinear system. The algorithm for constructing a dither signal is given as follows [8].
The time interval [0, T ] is divided into an arbitrary number φ of equal subintervals. The
beginning of the first interval, the end of the first interval, the end of the second interval
and the end of the φth interval are denoted by t0, t1, t2 and tφ respectively. Hence, the
repetition frequency, shape and amplitude of dither can be determined by regulating the
parameters φ, αm(tp) and βm(tp).

The TS fuzzy model with uncertainty of the uncertain relaxed model is reconstructed
described by

IF zR1(t) is MRi1(αm, βm) and · · · and zRk(t) is MRik(αm, βm) (13)

THEN ẋR(t) = (Ai(αm, βm) + ∆Ai)xR(t) + (Bi(αm, βm) + ∆Bi)uR(t),

i = 1, 2, . . . , g. (14)

Similarly, the overall fuzzy relaxed model with uncertainty is described as follows:

ẋR(t) =

g∑
i=1

sψ∑
ψ=1

sυ∑
υ=1

hi(zR(t), αm, βm)λiψ(xR(t))ηiυ(xR(t))

{(Ai(αm, βm) + Aiψ)xR(t) + (Bi(αm, βm) +Biυ)uR(t)} . (15)

The closed-loop uncertain fuzzy relaxed system is represented as follows:

ẋR(t) =

g∑
i=1

g∑
j=1

sψ∑
ψ=1

sυ∑
υ=1

ẽijψυ(zR(t), αm, βm) {Ai −BiFj + Aiψ −BiυFj}xR(t). (16)

Hereafter, we are concerned with stability of the closed-loop fuzzy relaxed reduced
system instead of discussing that of the closed-loop dithered system. A stability criterion
is presented in the following theorem.

Theorem 3.1. The closed-loop uncertain fuzzy relaxed system is quadratically stable if
and only if the following conditions hold

i) G (αm, βm) +D (αm, βm)O (αm, βm)E (αm, βm) is a stable matrix, (17a)

ii)
∣∣∣∣E (αm, βm)

(
sI −G (αm, βm)−D (αm, βm)O (αm, βm)E (αm, βm)

)−1
D (αm, βm)Q (αm, βm)

∣∣∣∣
∞

≡ ρ (αm, βm) < 1. (17b)

From the stability conditions above, the parameters αm and βm can be chosen to fulfill
the requirements in Theorem 3.1. In other words, an appropriate dither may be chosen
to guarantee that the closed-loop fuzzy relaxed reduced system is stable.
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4. A Numerical Example. Consider an uncertain nonlinear system

ẍ = 0.5x+ c(t)x+ 1.2ẋ+ x3u. (18)

where x is the state variable; u is the input variable and c(t)x is an uncertain term
(c(t) ∈ [c3 c4] where c3 and c4 are the lower bound and the upper bound of c(t)).
Assume that c(t) ∈ [−0.4 0.4]. The nonlinear term of the uncertain nonlinear system is
x3u, which satisfies

−27u ≤ x3u ≤ 27u for x ∈ [−3 3]. (19)

The above equation proves that the nonlinear term can be confined by an upper bound
and a lower bound. The nonlinear term can be represented by the following equation:

IF x(t) is M1 THEN ẋ(t) = (A1 +∆A1)x(t) + (B1 +∆B1)u(t), (20)

IF x(t) is M2 THEN ẋ(t) = (A2 +∆A2)x(t) + (B2 +∆B2)u(t), (21)

where

∆Ai =
2∑

ψ=1

λiψ(x(t))Aiψ, ∆Bi =
2∑

υ=1

ηiυ(x(t))Biυ, x(t) =
[
ẋ(t) x(t)

]T
, (22)

ẋ(t) =
2∑
i=1

2∑
ψ=1

2∑
υ=1

Mi(x(t))λiψ(x(t)) ηiυ(x(t)) {(Ai + Aiψ)x(t) + (Bi +Biυ)u(t)} . (23)

The feedback gains are

F1 = [−1.0824 −1.0187], F2 = [0.7428 0.9316]. (24)

We can derive the closed-loop uncertain fuzzy system:

ẋ(t) =
2∑
i=1

2∑
j=1

2∑
ψ=1

2∑
υ=1

Mi(x(t))Mj(x(t))λiψ(x(t)) ηiυ(x(t))
{
Ai −BiFj

+ Aiψ −BiυFj
}
x(t). (25)

Subsequently, we attempt to improve the stability of the closed-loop uncertain nonlinear
system by injecting a periodic symmetrical square-wave dither d(t) with sufficiently high
frequency. Notice that the dither signal is injected just in front of the nonlinearity. The
uncertain dithered system is described with

ẍ = 0.5x+ 1.2ẋ+ c(t)x+ (d+ x)3u. (26)

By usingMR1 andMR2, the uncertain relaxed model can be represented by the following
TS fuzzy relaxed model with uncertainty:

IF xR(t) is MR1 THEN ẋR(t) = (A1 +∆A1)xR(t) + (B1 +∆B1)uR(t), (27a)

IF xR(t) is MR2 THEN ẋR(t) = (A2 +∆A2) xR(t) + (B2 +∆B2)uR(t). (27b)

We obtain amplitude from Simulation in Figure 1 of the closed-loop fuzzy relaxed
system with the dash line of 1. The closed-loop uncertain dithered system is approximated
by its corresponding closed-loop uncertain fuzzy relaxed model and the approximation
improves as the frequency of dither increases.

5. Conclusions and Future Research. This paper combines fuzzy theory and the
parallel-distributed-compensation scheme to design a fuzzy controller to stabilize an un-
certain nonlinear system. A frequency is injected into the uncertain nonlinear system
to improve the stability of nonlinear system. Simulation results display the stability by
choosing appropriate parameters. Further study could focus on the tunes of the parame-
ters.
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Amplitude of dither

Figure 1. Simulation results of the dither
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