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Abstract. One of the problems with speech recognition is a low recognition performance
in noise environments, as speech is easily influenced by noise. On the other hand, body-
conducted speech (BCS) can be measured under any environment, as it is not affected by
airborne noise. With this feature, a noise robust speech recognition system can be realized
with BCS. However, the BCS recognition system should re-estimate an acoustic model for
high performance, as the parameter characteristics have large differences between speech
and BCS. In this study, we aim to improve the acoustic model for BCS recognition with
a focus on parameters such as mean vector, covariance matrix, weight, and transition
probability in acoustic model, along with model adaptation for BCS, by using the max-
imum likelihood (ML) and maximum a posteriori method (MAP), respectively. As the
result, BCS recognition with model adaptation was achieved to about 95% and more in
word recognition rate.
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1. Introduction. Speech conversation is one of the most important communication
method for us. However, noisy environments make it difficult to communicate using
speech easily, as the noise becomes a disturbing factor for understanding spoken words
and sentences. To avoid the effects of noise sound, several researchers have investigated
noise suppression and signal extraction in a noise environment [1-4]. Microphone arrays
can measure from about −5 dB to 0 dB signal-to-noise ratio (SNR) [4]. Body-conducted
speech (BCS) is one of the solutions for measuring speech sound in a noise environment.

BCS can be used to conduct the noise robust speech recognition, as the BCS sound is
not affected by the noise sound. However, it is difficult to measure clear sound using BCS,
compared to speech of 2 kHz and more. In order to achieve high performance in recog-
nition, the acoustic model has to re-estimate BCS [5]. Furthermore, for the improvement
of recognition performance in an acoustic model, we need to discuss parameters such as
covariance matrix, transition probability, and weight, which can be expected to contribute
to recognition performance with model adaptation.

The remainder of the paper is organized as follows. In Section 2, we show the dif-
ferences between speech and BCS, and then discuss advantages and weaknesses of the
sounds. Next, Section 3 provides an overview of an acoustic model, and Section 4 discuss-
es experiments on speech recognition with model adaptation of MAP and ML methods.
Finally, Section 5 offers conclusions and recommendations for future research in this field.
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2. Speech and BCS. Speech is an air-conducted sound, and is easily influenced by
surrounding noise. In contrast, BCS is a solid-propagated sound that is difficult to be
influenced by noise. Figures 1 and 2 represent the utterance of the name of a local
Japanese place called “Asahi” by a 20-year-old male. The utterance was chosen from the
JEIDA-100-local-place-name database [6]. Table 1 shows the recording environments. The
signals were recorded at 16 kHz with 16 bits. Speech was measured using a microphone
positioned at a distance of 30 cm from the mouth, which is the ideal microphone position
for practical use, and BCS was measured using an accelerometer placed on the upper
lip. The distance for speech is assumed as that of a conventional speech interface, such

Figure 1. Speech

Figure 2. BCS
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Table 1. Recording environments

Device name Model name
Recorder TEAC RD-200T

Microphone Ono Sokki MI-1431
Microphone amplifier Ono Sokki SR-2200
Microphone position 30 cm (Between mouth and microphone)

Accelerometer Ono Sokki NP-2110
Accelerometer amplifier Ono Sokki PS-602
Accelerometer position Upper lip

as a car navigation system. The measuring position for BCS has already been discussed
and proven suitable, compared with the feature parameters between speech and BCS, in
previous research [5]. However, BCS does not measure 2 kHz or more of higher frequency
components, and conventional speech recognition does not work for practical use due to
differences in the quality of sound and feature parameters.

3. Acoustic Model. The fundamentals of speech recognition can be described and im-
plemented using information theory for estimating a probabilistic model. The decoding
of speech recognition means calculation of the likelihood of acoustic and linguistic match-
ing with speech and models. In this study, we decode to the word utterance with only
acoustical matching in order to focus on how to achieve high likelihood of acoustic and
linguistic matching with acoustic model and feature parameters of sounds. Conventional
speech recognition is optimized using an unspecified speaker’s speech; hence, it is diffi-
cult to achieve high likelihood when we used BCS directly for the system. To achieve
high recognition performance, we should improve sound quality or the acoustic model.
Therefore, in this study, we focused on the re-estimation of an acoustic model that is
composed from a statistical model, including multi-dimensional Gaussians and transition
probability of HMM (Hidden Markov Model).

4. Experiment. Experiments were performed to improve the performance of speech
recognition with re-estimations of the acoustic models. The parameters in the model
should be re-estimated for speech into for BCS, because speech recognition estimates result
candidates of words chosen by matched with feature parameters of sound and cepstrum
parameters in the models. The model parameters include feature vectors, covariance
matrix, weight, and transition probability; thus, the authors experimented and discussed
whether the recognition performances should be evaluated using model re-estimation or
not.

4.1. Experimental setup. Table 2 shows the experimental conditions for the isolated
word recognition. The experiment used two databases: 20021213 and 20030228. In both
databases, the speaker uttered JEIDA 100 hundred local place name in a quiet room.
The signals were recorded using a microphone and an accelerometer. Database 20021213
comprises 900 words uttered by three male speakers during three trials, and database
20030228 comprises 600 words uttered by two male speakers during three trials.

A speech-recognition decoder, Julius 4.2 [7], employed for isolated word recognition as
well, was used in this experiment. The experiments were performed under two conditions:
open and close test. The re-estimations of acoustic models were only used for database
20021213, and were then re-estimated using HTK [8]. However, our recognition experi-
ments used both databases. Database 20021213 was used for the closed test, and database
20030228 was used for the open test. The dictionary for recognition is a 100-local-place-
name dictionary from JEIDA, which includes 100 names of local places in Japan, in which
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Table 2. Experimental conditions

Speaker 20021213: 3 males; 20030228: 2 males
Data set 100 words × 3 set/person

Vocabulary JEIDA 100 names of local places
Decoder Julius 4.2

Acoustic model Gender-dependent tri-phone
Model condition 16 mix, clustered 3,000 states

Parameter MFCC(12) + ∆MFCC(12) + ∆POW(1)
Training for baseline model 20,000 samples of speech with HTK 2.0

Model re-estimation condition 600 samples of speech or BCS, 20021213 with HTK 3.4.1

Table 3. Recognition results of model re-estimations

20021213 20030228
Speech BCS Speech BCS

Correct Diff. Correct Diff. Correct Diff. Correct Diff.
Baseline 94.83 +0.00 54.33 +0.00 96.11 +0.00 46.56 +0.00

ML

Mean 99.82 +4.99 99.17 +44.83 99.81 +3.70 99.15 +52.59
Variance 100.00 +5.17 99.72 +45.39 99.89 +3.78 99.52 +52.96
Transition 94.67 −0.17 55.61 +1.28 96.56 +0.44 46.81 +0.26
Weight 96.39 +1.56 73.39 +19.06 97.67 +1.56 67.30 +20.74
All 100.00 +5.17 100.00 +45.67 99.96 +3.85 100.00 +53.44

MAP

Mean 99.11 +4.28 94.22 +39.89 99.59 +3.48 94.48 +47.93
Variance 99.00 +4.17 91.28 +36.94 99.74 +3.63 90.41 +43.85
Transition 94.83 +0.00 54.33 +0.00 96.11 +0.00 46.56 +0.00
Weight 95.83 +1.00 60.00 +5.67 97.37 +1.26 54.52 +7.96
All 94.83 +0.00 54.33 +0.00 96.11 +0.00 46.56 +0.00

phonemes in the database were balanced at mora and syllable of appearance ratio. In ad-
dition, the acoustic model, which uses a tri-phone model as the phoneme and/or syllable,
was expressed as an HMM, which was composed from parameters such as mean vectors,
diagonal covariance matrices, mixture weight, and the transition probabilities of a partic-
ular state because there are main parameters at HMM. The re-estimations of parameters
in HMM are calculated using two algorithms: the maximum likelihood estimation method
(ML) and the maximum a posteriori probability estimation method (MAP) [9]. ML is a
stochastic approach to calculating the acoustic model; however, there is a possibility of
falling into a local solution in case of non-suitable initial parameters. MAP is a method
based on the likelihood maximization criterion, which has the advantage that even if the
initial value is unstable, it is difficult to fall into a local solution.

4.2. Experimental result and discussion. Table 3 shows the recognition results of
model re-estimations. The baselines use gender-dependent models for unspecified speakers
without re-estimation. The other data used are the results of acoustic models with re-
estimations. From the results, we confirmed the effectiveness of model re-estimations at
mean vectors, mixture weights, and diagonal covariance matrices. On the other hand,
there is no effect to use transition probability. At first, we focused on the result of
mean vectors, which were confirmed on about 40% to 50% and more because it is one of
most important factors. Next, covariance is also achieved to about 40% to 50%, as the
covariance can cover distribution of each parameter when the mean vector is the same.
It can be seen that even with the same mean vector, distributions between speech and
BCS are covered with the re-estimation of covariance only. Transition probability refers



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.10, NO.5, 2019 431

to the staying probability of each state of HMM. However, the time duration and its
boundary at each state of HMM are always the same, as both sounds are synchronized.
The re-estimated boundary of each syllable and phonemes are almost the same; thus, the
efficiency of re-estimation of the transition probability was not obtained.

5. Conclusion and Future Work. This study investigated and experimented with
improvements to BCS recognition using conventional speech recognition, and evaluated
recognition performance using model re-estimations. It was confirmed that the recognition
performances significantly improved after the re-estimation of the mean vector, mixture
weights, and covariance matrices, using two re-estimation algorithms: ML and MAP. The
level of performance improved sufficiently to allow the practical application of speech
recognition.

In future, the authors plan to conduct these performance improvements using mod-
el re-estimations with sound quality improvement method, combined with a differential
acceleration and noise reduction method [4].
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