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Abstract. When the clustering algorithms are used for image pixel segmentation, a
common defect is that the algorithms are especially sensitive to image noise and artifac-
t. It may seriously affect the image segmentation quality. In this paper, a kernel-based
clustering algorithm with spatial constraint under the framework of membrane computing
is proposed. It can overcome this defect effectively. In the proposed algorithm, the pixels
in an image are mapped into some higher-dimensional feature space, and a tissue-like
P system is designed to find the optimal cluster centers, where its objective function
contains the space constraints. The proposed algorithm is not only suitable for solving
non-spherical data clustering problems but also has good robustness for image noise. The
proposed algorithm is evaluated on some real images and compared with several existing
algorithms. The experimental results demonstrate the availability of the proposed algo-
rithm and they are close to the results of the manual segmentation.
Keywords: Image segmentation, Membrane computing, Kernel clustering, Space con-
straints

1. Introduction. The data clustering is a method, which makes the samples in the same
cluster be more similar than those from different clusters [1]. Image segmentation problem
can be also seen as such a process of dividing an image into disjoint homogeneous regions.
The same region contains homologous objects, while the objects in the different regions
usually are more variant. Therefore, there is some similarity between image segmentation
and data clustering. In recent years, the clustering algorithms have been widely used for
image segmentation.

Trivedi and Bezdek [2] proposed a fuzzy clustering approach for image segmentation.
Kim et al. [3] presented a fuzzy-c-means algorithm for color clustering and discussed an
initialization scheme. Ahmed et al. [4] proposed an improved fuzzy-c-means algorithm
for magnetic resonance image (MRI) image segmentation. Chen and Zhang [5] discussed
an image segmentation method, which is a modified fuzzy-c-means with the kernel dis-
tance measure. Zhang and Chen [6] proposed a fuzzy-c-means algorithm based on kernel
method. Das and Sil [7] presented the kernel-induced fuzzy clustering for clustering the
pixels of an image in the gray-scale intensity space, where an improved differential evolu-
tion algorithm was used to determine the optimal cluster center.

Membrane computing is a novel distributed and parallel computing model, inspired by
the structure and function of living cells and the cooperation of cells in tissues, organs, and
cell populations [8,9], known as P system. There are three main types of P systems [10-14]:
the cell-like P systems, the tissue-like P systems and the neural-like P systems. In recent
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years, the application of membrane computing in real-world problems has attracted much
attention, for example, fuzzy inference [15,16], fault diagnosis [17-19], and optimization
problems [20,21]. Membrane computing has been used to solve data clustering problems
and the kind of algorithms are called membrane clustering algorithms (MCA), whose
idea is to use P systems to determine the optimal cluster centers [22-26]. Recently, some
researchers use membrane computation for image segmentation. Peng et al. [27] proposed
a threshold segmentation method using P system. Zhang et al. [28] used the membrane
clustering algorithm to realize the image pixel segmentation. However, when the above
clustering algorithms are used to deal with image segmentation, there is a defect that
the algorithms are especially sensitive to the noise and imaging artifact. Moreover, the
existing membrane clustering algorithms only are suitable for clustering spherical data.
In this paper, to overcome the above problem in the membrane clustering algorithm

for image segmentation, we propose a novel kernel-based clustering algorithm under the
framework of membrane computing. The image segmentation problem is considered as
the data clustering problem, in which the objective function consists of two parts: one is
the optimization objective with kernel function, and the other is the constraint item of
spatial information. A tissue-like P system is considered as the computational framework
to determine the optimal cluster centers. The proposed segmentation method can better
avoid the problem of the noise and imaging artifact, and also be better suitable for the
non-spherical clustering boundary data.

2. The Proposed Algorithm.

2.1. A kernel-based clustering algorithm. Let I be a grayscale image of m1 × m2,
whose pixel values form a data set D = {x1, x2, . . . , xn} in line by line, where n = m1×m2

and xi ∈ {0, 1, . . . , 255}. Based on the idea of kernel method, the data set D is mapped
to some high dimensional feature space F by a nonlinear function ϕ. The mapping data
set can be represented by D′ = {ϕ(x1), ϕ(x2), . . . , ϕ(xn)} and will be clustered in feature
space F . Suppose that D′ is clustered as k clusters and the objective function to be
optimized is defined by:

Jm (z′1, z
′
2, . . . , z

′
k) =

k∑
i=1

n∑
j=1

(uij)
1
2 ∥ϕ(xj)− z′i∥

2
(1)

where uij denotes the membership of data point ϕ(xj) belonging to the ith cluster, and
z′i is the center of the ith cluster. Let ϕ(zi) = z′i and K(xi, xj) = ⟨ϕ(xi), ϕ(xj)⟩, which
is called the kernel function. Note that in feature space F the kernel distance can be
expressed by ||ϕ(xi) − ϕ(xj)||2 = K(xi, xi) − 2K(xi, xj) + K(xj, xj), so the objective
function (1) can be represented as follows.

Jm (z1, z2, . . . , zk) =
k∑

i=1

n∑
j=1

(uij)
1
2 (K(xj, xj)− 2K(xj, zi) +K(zi, zi)) (2)

where z1, z2, . . . , zk denote the centers of the k clusters in the original space, respective-
ly. If the Gaussian function K(xi, xj) = exp

(
− 1

2σ2 ||xi − xj||
)
is used and the spatial

information constraint is considered, then the objective function is given as follows.
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(uij)
1
2 (1−K(xj − zi))

+ α
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2 (1−K(x̂j − zi))

(3)
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where the first item is derived from Formula (2) using the Gaussian function, and the
second is spatial information constraint; x̂j is the mean value of grayscales of neighbor
pixels of xj; uij is computed by

uij =
((1−K(xj, zi)) + α (1−K(x̂j, zi)))

1
1−m∑k

i=1 ((1−K(xj, zi)) + α (1−K(x̂j, zi)))
1

1−m

(4)

Therefore, the image pixel clustering problem can be changed to an optimization problem
with the objective function (3). Based on the objective function, we use a tissue-like P
system to determine the optimal cluster centers {z1, z2, . . . , zk}. In the next section, we
describe the implementation of the kernel-based clustering algorithm under the framework
of membrane computing.

2.2. The implementation of the kernel-based clustering algorithm under the
membrane computing framework. The tissue-like P system includes evolution rule
and communication rule, so the tissue-like P system is designed as the computing frame-
work. Each cell has evolution rules as well as some objects, and there is a communication
rule between each cell and the environment. The environment is also the stored region,
and the stored object is the final solution after the system halts. In the following, we
describe the components of the tissue-like P system in detail.

2.2.1. Object presentation. The designed P system is to find the optimal cluster centers,
so the object in the system represents a group of the cluster centers. Each cell contains m
objects. In the traditional clustering, an object can be represented by Z = {z1, z2, . . . , zk},
where z1, z2, . . . , zk represent the centers of the k clusters, respectively. However, in kernel-
based clustering algorithm, the data is mapped into the high-dimensional feature space,
as shown in Figure 1, so the object can be represented as O = {ϕ(z1), ϕ(z2), . . . , ϕ(zk)}.

Figure 1. Object representation

In the designed tissue-like P system, Oi
best is the optimal object in cell i, while Obest is

the global optimal object of the system stored in the environment.

2.2.2. Evolution rules. In the designed P system, each cell has the same evolution rule,
and an improved velocity-position model is used as the evolutionary rule, which is defined
as follows.{

Vi = w ·Oi + c1 · r1(Pi −Oi) + c2 · r2 (Oi
best −Oi) + c3 · r3(Obest −Oi)

Oi = Oi + Vi
(5)

where Pi is the best position of object Oi, and a global optimal object is introduced to
increase the balance between global exploration and local exploration. In the improved
velocity-position model, c1, c2, c3 are the learning factors and c1 = 2, c2 = 2, c3 = 2, r1,
r2, r3 are the random numbers in [0, 1], and w represents the weight and is set to 0.75.
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2.2.3. Communication rule. In the designed P system, communication rule between the
environment and each cell is introduced. The communication rule has the advantages of
two aspects: (i) The information can be shared between these cells; (ii) the optimal object
of the whole system is stored in the environment. The communication rule is given by

⟨i, Oi
best/Obest , 0⟩, i = 1, 2, . . . , q (6)

When the optimal object Oi
best in cell i is better than the optimal object Obest in the

environment, the optimal object Obest in the environmen is updated by Oi
best .

2.2.4. Halting and output. For simplicity, a halting condition is considered: the maximum
number of steps. The tissue-like P system runs from the initial state to the maximum
execution step. When the system halts, the optimal objects stored in the environment
are regarded as the optimal cluster centers. According to the optimal clustering centers,
the final segmentation results can be obtained by re-classifying the pixels of the image.

3. Simulation Experiments.

3.1. Data sets and the compared algorithms. To evaluate the performance of the
proposed algorithm, nine gray-scale images are used in experiments, including animals,
plants, landscapes, etc. The images are from the Berkeley segmentation dataset, labeled
from “test image 1” to “test image 9”, and each image is with 256× 256 pixels.
The algorithm proposed in this paper is a kernel-based clustering algorithm with spatial

constraint under the framework of membrane computing, denoted by KMCA S in short.
The proposed algorithm is compared with four existing clustering algorithms, which are
(i) kernel-based the fuzzy-c-means (FCM) algorithm (KFCM) [6], (ii) FCM with spatial
constraints based on kernel-induced distance metric (KFCM S) [5], (iii) a velocity-position
model (PSO) based kernel clustering method (Kernel+PSO) [27] and (iv) an image pixel
clustering algorithm based on P systems (PS) [28].
To judge the clustering accuracy, the results obtained by these algorithms on the test

images were compared with the manually segmented images. If the obtained results are
closest to the manually segmented images, it means the algorithm is better. Meanwhile,
we also adopt two clustering performance indexes to quantitatively evaluate the clustering
quality: accuracy [10] and adjusted rand index [11].
1) Accuracy: The accuracy is the percentage of correctly clustered pixels in the image.

It is given by r =
∑k

i=1 ni

n
.

2) Adjusted rand index (ARI): ARI index is used to test the degree of coincidence of
the data and is in [−1, 1]. ARI index is defined as follows
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where ni+ is the number of pixels classified into cluster i in the image, and n+j is the
number of pixels classified into class j in the ground truth image.
The parameters of all methods are set as follows: in KFCM S and the proposed algo-

rithm, α = 1; the three kernel-based algorithms employ the Gaussian kernel with σ = 150
for all the test images; for Kernel+PSO algorithm, the population size is 30, maximum
number of iteration is 30, w = 0.75, and c1 = c2 = 2; for PS, the number of elemen-
tary membranes is set to be q = 4, and the crossover rate (CR) is 0.8; for the proposed
KMCA S, the degree of tissue-like P system is 3, which consists of three cells.
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Table 1. The mean and standard deviations of the four algorithms in
terms of accuracy

Data
sets

KFCM KFCM S Kernel+PSO PS KMCA S

1 0.5894(0.0935) 0.6747(0.0923) 0.5984(0.0796) 0.6192(0.1186) 0.7631(0.0769)
2 0.7546(0.0973) 0.7227(0.0942) 0.8068(0.0462) 0.7932(0.0873) 0.8498(0.0362)
3 0.6004(0.0978) 0.595(0.0956) 0.6681(0.0757) 0.5982(0.0789) 0.7402(0.0108)
4 0.7512(0.1022) 0.7322(0.0606) 0.9403(0.0551) 0.816(0.0576) 0.9376 (0.0433)
5 0.7794(0.1444) 0.7247(0.1331) 0.864(0.1054) 0.8475(0.0576) 0.9055(0.017)
6 0.574(0.071) 0.5801(0.0645) 0.637(0.0352) 0.4366(0.0468) 0.7027(0.0138)
7 0.6689(0.1028) 0.6705(0.1337) 0.7269(0.0617) 0.5793(0.077) 0.7883(0.0529)
8 0.5379(0.0633) 0.542(0.09) 0.546(0.0361) 0.4161(0.038) 0.7437(0.0357)
9 0.7305(0.1557) 0.7911(0.15) 0.8211(0.1432) 0.6527(0.1375) 0.8938(0.1273)

Table 2. The mean and standard deviations for the four algorithms in
terms of ARI

Data
sets

KFCM KFCM S Kernel+PSO PS KMCA S

1 0.0349(0.1727) 0.1173(0.1959) 0.0526(0.1667) 0.057(0.2183) 0.2059(0.1572)
2 0.4632(0.1477) 0.4391(0.1219) 0.5672(0.072) 0.4932(0.1158) 0.6082(0.0627)
3 0.3288(0.1551) 0.3029(0.1658) 0.4356(0.0966) 0.308(0.1424) 0.5194(0.0206)
4 0.1505(0.2844) 0.1058(0.2126) 0.7935(0.091) 0.534(0.0434) 0.7656(0.1491)
5 0.3629(0.3246) 0.2228(0.2998) 0.5565(0.2806) 0.4831(0.1618) 0.6525(0.0574)
6 0.3752(0.0891) 0.3888(0.0841) 0.4643(0.0425) 0.1842(0.0827) 0.5347(0.0297)
7 0.3231(0.1709) 0.4014(0.1883) 0.4076(0.0763) 0.0186(0.058) 0.5327(0.087)
8 0.2811(0.0871) 0.2999(0.1352) 0.3198(0.0242) 0.0398(0.0521) 0.5087(0.0623)
9 0.4039(0.2387) 0.527(0.2635) 0.577(0.2256) 0.350(0.2019) 0.6337(0.1525)

3.2. Experimental results and analysis. Tables 1 and 2 provide the experimental
results of the proposed and compared algorithms in terms of accuracy and adjusted rand
index, where “1” to “9” represent from “test image 1” to “test image 9”. Since these
algorithms contain random factors, the average and standard deviation of each algorithm
on each image are computed on running 30 times independently. The average reflects
the average performance of each algorithm, while the standard deviation indicates the
stability of the algorithm.

In general, the higher the accuracy and the adjusted rand index are, segmentation re-
sult obtained by an algorithm is closer to the real region. From Table 1, we can observe
that the performance of the proposed KMCA S algorithm is better than KFCM, KFCM S
and Kernel+PSO except for test image 4. The proposed algorithm achieves the lowest
standard deviation in all test images. From Table 2 we can observe that in addition
to test image 4, the proposed KMCA S algorithm performs better than the other three
algorithms in terms of adjusted rand index. For standard deviation, the proposed algo-
rithm has the second smallest value on test image 4, test image 7 and test image 8, but
the standard deviations on other images are lower than other algorithms. These results
indicate that the proposed KMCA S algorithm has good segmentation performance and
high stability.

In addition to quantitative comparison, we also provide a visual comparison: The
segmentation results of the proposed clustering algorithm are compared with the results
of manual segmentation. If the segmentation result of an algorithm is closer to the result
of manual segmentation, this means that the algorithm is more effective. Figure 2 shows
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Figure 2. Segmentation results for nine test images

the comparison of the proposed algorithm and manually segmentation, where (a), (b)
and (c) are original image, manually segmented image and segmentation with KMCA S,
respectively.
From above visual comparison, it can be seen that segmentation results of the proposed

KMCA S algorithm are similar to the manually segmented ones; however, misclassification
still exists in some regions. For example, in test image 7, because the person’s clothing
decoration and the pixels in the black background are closer, the two regions are easily
classified into the same class. To improve the situation, the spatial constraints from
neighbor pixels can be used to determine their classes. However, some information may
be lost when spatial constraints are too large. Therefore, it can be seen from test image 4
that the accuracy of the proposed KMCA S algorithm is lower than that of Kernel+PSO.

4. Conclusions. This paper discussed a kernel-based clustering algorithm under the
framework of membrane computing for image pixel segmentation, where spatial con-
straints were in kernel-induced objective function. A tissue-like P system was designed
to determine the optimal cluster centers. The proposed clustering algorithm can over-
come some defects in the existing clustering algorithms for image pixel segmentation.
The proposed and compared algorithms have been evaluated on some real images. The
comparison results have demonstrated the availability of the proposed algorithm. How-
ever, the proposed algorithm does not achieve the expectant results due to the use of
image pixel features. Therefore, our further work is to apply the proposed algorithm in
super-pixel segmentation.

Acknowledgment. This work was partially supported by the Research Fund of Sichuan
Science and Technology Project (No. 2018JY0083), Chunhui Project Foundation of the
Education Department of China (Nos. Z2016143 and Z2016148), and Research Foundation
of the Education Department of Sichuan province (No. 17TD0034), China.

REFERENCES

[1] A. K. Jain, M. N. Murty and P. J. Flynn, Data clustering: A review, ACM Computing Surveys,
vol.31, no.3, pp.264-323, 1999.

[2] M. M. Trivedi and J. C. Bezdek, Low-level segmentation of aerial images with fuzzy clustering, IEEE
Trans. Systems Man & Cybernetics, vol.16, no.4, pp.589-598, 1986.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.10, NO.4, 2019 317

[3] D. W. Kim, K. H. Lee and D. Lee, A novel initialization scheme for the fuzzy c means algorithm for
color clustering, Pattern Recognition Letters, vol.25, pp.227-237, 2004.

[4] M. N. Ahmed, S. M. Yamany, N. Mohamed, A. A. Farag and T. Moriarty, A modified fuzzy c-means
algorithm for bias field estimation and segmentation of MRI data, IEEE Trans. Medical Imaging,
vol.21, pp.193-199, 2002.

[5] S. Chen and D. Zhang, Robust image segmentation using FCM with spatial constraints based on
new kernel-induced distance metric, IEEE Trans. Systems Man & Cybernetics – Part B, vol.34, no.4,
pp.1907-1916, 2004.

[6] D. Zhang and S. Chen, Clustering incomplete data using kernel-based fuzzy c-means algorithm,
Neural Processing Letters, vol.18, pp.155-162, 2003.

[7] S. Das and S. Sil, Kernel-induced fuzzy clustering of image pixels with an improved different evolution
algorithm, Information Sciences, vol.180, no.8, pp.1237-1256, 2010.
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