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Abstract. Style transfer is a hot research topic in the field of image processing in
recent years, but the current studies on style transfer mainly focus on the oil paintings,
landscape paintings and other images. This paper extends the study of style transfer
to the calligraphy fonts, and proposes a method based on generative adversarial networks
(GAN). It uses GAN to learn the mapping between two training sets (i.e., Chinese famous
calligraphy fonts and printed fonts), and then any calligraphy fonts can be automatically
generated. In our experiments, the Wang Xizhi’s calligraphy fonts dataset is used to
train the GAN, and the trained-well GAN automatically generates the corresponding
calligraphy fonts with Wang Xizhi’s style. The experimental results demonstrate the
feasibility of the proposed method.
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1. Introduction. For a long time, more than a quarter of the world’s population have
used Chinese as a daily language. The Chinese writing has always been one of the most
basic skills in education and communication in China. However, as an ancient writing art,
Chinese calligraphy, which evolved from oracle bone script to large seal script, small seal
script, and was fixed to cursive script in Han Dynasty, semi-cursive script in Jin Dynasty,
has been exuding the charm of art all the time. Today, the excellent calligraphy is not
only an artistic expression of language, but also can better reflect the level of personal
self-cultivation.

Although the calligraphy style transfer is not investigated as extensively as image style,
there are still some methods to generate Chinese fonts. The generation of Chinese fonts
can be mainly represented by art calligraphy, printing [1-4] or personal handwriting gen-
eration [5-7]. Most previous works relied on hierarchical representations of simple strokes
[1,5] which was used as the basis for representing Chinese fonts. StrokeBank [8] de-
composed Chinese fonts into component trees. FlexiFont [9] scanned and processed the
handwritten character images captured by the camera, and then formatted the fonts into
TrueType font files. Recently, the awesome printing technique [3] has discussed the prob-
lem of producing special effects for typography, and used statistical data with highly
regular spatial distribution of text effects to guide the synthesis process. Zi2zi [2] learned
to transform fonts style using pix2pix [10] method with paired fonts images as the training
data. However, in the task of generating calligraphy fonts, even if the same person writes
the same Chinese font, there will be some changes. Therefore, learning the style of the
calligraphy fonts should focus on the overall style of fonts rather than writing changes of
a single font. So, it should more focus on the overall style of fonts rather than writing
changes of a single font. So, it is more appropriate to use unpaired Chinese font data
to deal with the generation problem of calligraphy fonts. Chang et al. [22] proposed a
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Figure 1. (a) Paired training data, and (b) unpaired training data

DenseNet CycleGAN [19,21] method based on unpaired image-to-image transfer to solve
this problem. Their research focused on generating handwritten Chinese fonts. Figure 1
shows an example of paired training data and unpaired training data. The paired training
data consist of the same printed font and calligraphy font, while unpaired training data
does not necessarily include the same font.

Compared with handwritten Chinese fonts, calligraphy fonts have more complex fea-
tures, such as joined-up writing, stroke weight difference and bifeng. Then, handwritten
Chinese fonts are daily written fonts, and their style is very closer to the printed font. So
the generation of handwritten fonts from printed fonts will be easier and it will be harder
to extract calligraphy fonts style. In this work, we formulate the Chinese calligraphy fonts
generation as a problem that learns a mapping from existing printed fonts to calligraphy
fonts. We propose a style transfer method based on unpaired image to solve this problem.

2. Preliminaries.

2.1. GANs. GAN [11,12] is a powerful generative model, and it has achieved amazing
results on image generation [13,14], image editing [15], representation learning [16] and
so on. Its main goal is to force the discriminative model D to help the generative model
G generate fake data which is similar to the real data distribution. G and D are gener-
ally nonlinear mapping functions which are formalized by some network structures, such
as multilayer perceptron (MLP) or convolutional neural networks (CNN) [17]. Given a
random noise variable z following the simple distribution pz(z), the generative model G

implicitly defines a generative distribution pg by mapping z to G(z) to fit the real sample
distribution pdata . The discriminative model D, as a classifier, takes the real sample x

and the generated sample G(z) as input, and takes a scalar value as the probability out-
put which indicates the confidence that the current input is real data or not. Thus, the
quality of the data generated by G can be determined by D. When the input is a real
training sample x ∼ pdata , D(x) expects to output a high probability. When the input is
the generated sample G(z), D(G(z)) expects to output a low probability. However, for
G, it expects D(G(z)) outputs a high probability as much as possible so that D cannot
distinguish between real data and the generated data.

The two models are alternately trained to form the competition and adversarial. The
entire optimization process can be considered as follows:

minG maxD V (D, G) = Ex∼pdata(x)[log D(x)] + Ez∼pz(z)[log(1 − D(G(z)))] (1)

2.2. Cycle-consistent GANs (CycleGAN). The CycleGAN [19] method is based on
pix2pix framework, which uses cGAN [18] to learn the mapping from input to output,
but pix2pix relies on the paired training data. The innovation of the CycleGAN’s is to
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be able to realize this kind of transfer between the source domain and the target domain
without establishing a one-to-one mapping between training data.

This method performs a two-step transformation on the original image: first, the orig-
inal image is mapped to the target domain to get the first generated image, and then the
first generated image is mapped from the target domain to source domain to obtain the
second generated image, which eliminates the requirement for the paired images in the
target domain. The generative network is used to map the original image to the target
domain, and the quality of the generated image is improved by the discriminator.

3. The Proposed Method. Our task is to generate Chinese calligraphy fonts using
unpaired source and target fonts. We collect the regular script font dataset {xi}

N

i=1 ∈ X

and Chinese calligraphy font dataset {yj}
M

j=1 ∈ Y . Our objective is consistent with
CycleGAN, which is to learn style transfer between two domains without the paired
training samples. Our model includes two mappings, G: X → Y and F : Y → X, two
discriminators Dx and Dy, Dx is used to distinguish the pictures {x} and the transferred
picture {F (y)}, while Dy is used to distinguish {y} and {G(x)}. Dy encourages G to
translate X into outputs indistinguishable from domain Y , and vice versa for Dx, F , and
X. An example of the architecture of our method is shown in Figure 2.

Figure 2. The model contains two mapping functions G: X → Y and F :
Y → X, and their adversarial discriminators Dy and Dx.

3.1. Loss function. Our total loss consists of two parts: adversarial loss, and cycle
consistency loss. On the one hand, adversarial loss is applied in both mapping functions.
For mapping G and its discriminator Dy, we use the following function:

lGAN (G, Dy) = Ey∼pdata (y)[log Dy(y)] + Ex∼pdata(x)[log(1 − Dy(G(x)))] (2)

where G tries to generate G(x) that fits the image distribution in Y dataset, and Dy will
try to distinguish the generated picture and the real picture. The objective function of
the mapping G is:

G∗ = arg minG maxDy
lGAN (G, Dy) (3)

We introduce a similar adversarial loss function for mapping F and its discriminator
Dx:

F ∗ = arg minF maxDx
lGAN (F, Dx) (4)

On the other hand, theoretically, adversarial training can learn the mappings G and F

respectively and generate the images matching the distribution of the target calligraphy



206 G. ZHANG, W. HUANG, R. CHEN, J. YANG AND H. PENG

font data. However, because of using the mini-batch method, the extracted set is only
a small part of the total dataset, and the two datasets are not paired at the same time.
Therefore, the network can map the same set of input images to any arranged images
in the target dataset. All the learned mappings can generate the images that match the
target distribution. In other words, what the network learns by using a single adversarial
loss is only a small part of the target dataset’s data distribution rather than the entire
target dataset. So using only one adversarial loss function cannot guarantee that any xi

can generate the G(xi) we want.
In order to reduce this limitation, CycleGAN added two “cycle consistency losses” that

capture the intuition that if we translate from one domain to the other and back again we
should arrive where we started: forward: x → G(x) → F (G(x)) ≈ x (picture x from data
X), and backward: y → F (y) → G(F (y)) ≈ y (picture y from data Y ). The structure is
shown in Figure 2. The cycle consistency loss function is as follows:

lcycle(G, F ) = Ex∼pdata(x) [||F (G(x)) − x||1] + Ey∼pdata (y) [||G(F (y))− y||1] (5)

Finally, λ is added to control the relative importance of the two items, and the loss
function of CycleGAN is given as follows:

l(G, Dx, F, Dy) = lGAN (G, Dy) + lGAN (F, Dx) + λlcycle(G, F ) (6)

3.2. Implementation. The generator in the CycleGAN has the layers that implement
three stages of computation:

1) the first stage encodes the input via a series of convolutional layers that extract the
image features;

2) the second stage then transforms the features from a style to another through one
or more residual blocks [20];

3) the third stage decodes the transformed features using a series of convolutional layers
to build an output image of the same size as the input.

The residual block used in the transformation stage consists of a convolutional layer,
where the input is added to the output of the convolution. As a result, the characteristics
of the output image (e.g., the shapes of objects) do not differ too much from the input.
Table 1 provides the architecture of generator, and the proposed algorithm is given in
Table 2.

Table 1. The architecture of the generator

Module Specifications

Encoder
7*7 Convolution-batchNorm-ReLU, 32 filters, stride 1
3*3 Convolution-batchNorm-ReLU, 64 filters, stride 2
3*3 Convolution-batchNorm-ReLU, 128 filters, stride 2

Transfer

residual block
residual block
residual block
residual block
residual block
residual block

Decoder
3*3 fractional-strided-Convolution-BatchNorm-ReLU, 64 filters, stride 1/2
3*3 fractional-strided-Convolution-BatchNorm-ReLU, 32 filters, stride 1/2

7*7 Convolution-BatchNorm-ReLU, 3 filters, stride 1
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Table 2. The proposed algorithm

Algorithm Minibatch Adam training of CycleGAN.

(1) Draw a minibatch of samples
{

x(1), . . . , x(n)
}

from domain X

(2) Draw a minibatch of samples
{

y(1), . . . , y(m)
}

from domain Y

(3) Compute the discriminator loss on real images:

l
(D)
real =

1

n

n
∑

i=1

(

Dx

(

x(i)
)

− 1
)2

+
1

m

m
∑

j=1

(

Dy

(

y(j)
)

− 1
)2

(4) Compute the discriminator loss on fake images:

l
(D)
fake =

1

n

n
∑

i=1

(

Dy

(

G
(

x(i)
)))2

+
1

m

m
∑

j=1

(

Dx

(

F
(

y(j)
)))2

(5) Update the discriminators

(6) Compute the Y → X generator loss:

lF =
1

m

m
∑

j=1

(

Dx

(

F
(

y(j)
))

− 1
)2

+ lY →X→Y
cycle

(7) Compute the X → Y generator loss:

lG =
1

n

n
∑

i=1

(

Dx

(

G
(

x(i)
))

− 1
)2

+ lX→Y →X
cycle

(8) Update the generators

4. Experiments. In this section, we evaluate our proposed method on Wang Xizhi cal-
ligraphy dataset. Main results are shown in this section.

4.1. Environment. This experiment is implemented by Torch 7 programming on Ubuntu
16.04 platform. The processor is Intel Core i7-6700, 3.4GHz, 8-core CPU, 16G memory,
and the graphics card is NVIDIA GeForce GTX 1060 with 3G memory.

4.2. Dataset. In this paper, Wang Xizhi calligraphy fonts collected from the script of
“lantingji xu” etc. are used as the calligraphy font dataset. The experiments also use
the regular script font as the printed fonts dataset. Wang Xizhi set has 1000 training
sample images and 100 test sample images. The regular script fonts dataset consists of
a random input of 1000 Chinese characters. Both font datasets have undergone a unified
standardization process. Each Chinese character image consists of 256*256 pixels. Figure
3 provides a part of dataset.

Figure 3. (a) Regular script font dataset, and (b) Wang Xizhi’s calligra-
phy font dataset
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4.3. Calligraphy fonts results. The GAN learns the mapping between the Chinese
regular script font image and the Wang Xizhi’s calligraphy font image. After training,
the test set of the regular script font image is input into the trained-well model. The
calligraphy fonts results are shown in Figure 4 and it can be seen intuitively that the
output fonts already have the style of calligraphy fonts. The generative model can learn
the unique characteristics of the calligraphy style, such as strokes and joined-up, and these
features can be transferred to the input fonts.

Figure 4. (a) The regular script font dataset as input, and (b) the output
fonts which have Wang Xizhi’s calligraphy fonts style

To further discuss the effect of the images generated by generative model, we compared
these generated images with their corresponding real Wang Xizhi’s calligraphy fonts, as
shown in Figure 5. It can be seen that although overall the images generated by the
generative model have good quality and the features of strokes and join-up, which means
that it has largely learned the style of Wang Xizhi’s fonts. However, after comparing with
the original image, there are still many flaws in the details, such as the existence of noise,
uneven thickness of strokes, incomplete strokes of individual image and strokes adhesions.

Figure 5. A comparison between the generative calligraphy fonts and
Wang Xizhi’s original calligraphy fonts for the same character: (a) and
(c) are generative fonts, and (b) and (d) are Wang Xizhi’s original fonts

5. Conclusions. GAN is a powerful unsupervised generative model, which satisfies the
research and application requirements in many fields, and it has also injected new devel-
opment impetus into these fields at the same time. This paper extends the research of
GAN to the field of Chinese calligraphy. Some exploratory researches have been made
in Chinese classical calligraphy, and some progress has been made, but the effect of in-
dividual generated font is not satisfactory. In the next step, we will further adjust and
optimize the GAN network model to make the experimental results better. We will also
explore GAN’s research on ink painting in another aspect of Chinese classical art.
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