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Abstract. Different diagnostic features such as microaneurysms, hemorrhages, and
exudates appear over the retina due to diabetic retinopathy (DR) and cause vision loss.
Analysis of fundus image plays a vital role in monitoring and diagnosis of different allied
diseases due to DR. In this paper, multiscale analysis of diagnostic features has been
studied in different wavelet subbands. Feature information is analyzed in different sub-
bands for 3-, 5-, 7- and 9-level of wavelet decomposition. From the analysis, it reveals
that the different wavelet subbands carry different information about the retinal feature.
Analysis of retinal features is performed on DRIVE, ARIA and Messidor databases and
the performance is determined by using statistical measures such as accuracy, sensitivity,
and specificity. The experimental study shows that the diagnostic feature information is
distributed over different wavelet subbands for a particular level of wavelet decomposi-
tion. Microaneurysm information is mainly present in higher wavelet subbands compared
to lower wavelet subbands. Exudates information is present in some subbands. In other
words, it may be represented as few subbands do not contain any significant informa-
tion about the diagnostic feature. Subbands containing less diagnostic information can be
omitted for further analysis. This will help in efficient classification, segmentation and
detection purposes.
Keywords: Retinal image, Wavelet decomposition, Microaneurysms, Exudates, Dia-
betic retinopathy (DR)

1. Introduction. Diabetic retinopathy (DR) is a chronic disease related to eye where
the retina is progressively damaged and causes vision loss [1]. According to the World
Health Organization (WHO) report, the people having diabetics will increase to nearly
300 million by the year 2025 [2], which can be controlled if analyzed at the early stage
by a retinal screening test. The important diagnostic features over the normal retina are
optic disc, fovea and blood vessels. Different diagnostic features emerge over the retina
due to DR such as microaneurysms (MAs), hemorrhages, and exudates, which gradually
damages the retina [3]. Microaneurysm is the first clinically observable lesions appearing
as red tiny round dots near the blood vessels which have a similar contrast to that of
the blood vessels pixels. As the disease progresses hemorrhages appear over the retina
[4]. Exudates are the brightest feature similar to the optic disc which comes out of the
damaged blood vessels and they are the clinical symptoms of the related disease like
retinal venous obstruction, radiation retinopathy, Coat’s disease, capillary hemangioma
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of the retina, macular edema, and hypertensive retinopathy including DR [5]. Diabetic
macular edema (DME) is a most common disease due to exudates and it has three severity
levels, such as mild, moderate and severe depending on the diagnostic feature distribution
and distance from the fovea centre [6].

Usually, ophthalmologists look to the appearance and position of the features to diag-
nose vision loss. Extra care must be taken to avoid the loss of diagnostic components
in the fundus images during the analysis [7]. A good number of papers are present in
the literature about the segmentation of the pathological features from the color fundus
images. However, a limited number of papers have been published in the literature for
the study of diagnostic features in different wavelet subbands. The main objective of the
present work is to analyze the pathological features at different wavelet subbands for the
purpose of segmentation, analysis, and classification. This analysis is studied by a discrete
wavelet transform (DWT), which has the property of multiresolution or multiscale. Due
to this property of DWT, the feature which is difficult to be detected at one scale may
be easily detected by another scale. Nirmala et al. [8] find the anatomical structure of
the blood vessels information in different wavelet subbands. The thick and thin blood
vessels are distributed in the different resolution of the DWT. Large blood vessels are
extracted by low-resolution images, whereas thin and fine blood vessels are extracted by
high-resolution images.

Quality assessment should be done in medical images for quality diagnosis. Fundus
image contains the diagnostic feature which has to be considered and the nondiagnostic
information is to be ignored. The objective of the present work is to study the distribu-
tion of diagnostic feature across different wavelet subbands. Multiresolution or multiscale
property of DWT provides features that are difficult to detect at one scale may be detected
at other scales. Multiresolution analysis helps to produce localized image features with
good space frequency resolution. Fundus images contain fine anatomical feature (such
as blood vessels and exudates) and slowly varying feature (optic disc, hemorrhages, and
background). Pathological features such as microaneurysms, hemorrhages. and exudates
contain the diagnostic information about the condition of vision. In this proposed method,
the subband containing higher diagnostic information is determined by both the subjec-
tive and objective measures. Subjective measures are more reliable and time-consuming.
Different objective quality measures (such as sensitivity, specificity, sensibility, accuracy,
equal error rate, mean square error (MSE), root mean square error (RMSE), mean ab-
solute error (MAE), Pearson correlation coefficient (PCC), universal quality index (UQI)
and structural similarity index (SSIM)) are used to analyze the contribution of different
subbands towards the diagnostic information [9, 10].

A novel method is used for the analysis of the pathological features in different wavelet
subbands by 2D DWT, where different levels of wavelet decomposition are performed using
Daubechies-4 mother wavelet on the green channel of the color fundus image as it has
higher contrast between the background and the features. In each level of decomposition,
the images are reconstructed by considering the approximate subband coefficients at the
final level and one detail subband coefficients at a time. From each reconstructed image
the diagnostic feature is analyzed. The rest of the paper is organized as follows. The
proposed method for analysis of the diagnostic features is discussed in Section 2. In
Section 3 results are discussed. Conclusions are given in Section 4.

2. Proposed Method. The important aspect of medical images is the information of
interest which is spatially localized. Multiscale transform is the most popular multires-
olution analysis (MRA) technique, which segregates the information of an image into
a different wavelet subband matrix depending on the frequency [11]. In 2D DWT, the
image is decomposed into one low-frequency approximation (A) subband and three high-
frequency detailed subbands such as horizontal (H) subband, vertical (V) subband, and
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diagonal (D) subband. The scaling and wavelet function in 2D at a resolution level i can
be represented by

ϕi,m,n(x, y) = 2i/2ϕ(2ix−m, 2iy − n) (1)

ψbi,m,n(x, y) = 2i/2ψb(2ix−m, 2iy − n) (2)

where b represents the detail subbands H, V, and D. The DWT of an image p(x, y) of size
(P ×Q) can be defined as:

WTϕ(i0,m, n) =
1√
PQ

P−1∑
x=0

Q−1∑
y=0

p(x, y)ϕi0,m,n(x, y) (3)

WT bψ(i,m, n) =
1√
PQ

P−1∑
x=0

Q−1∑
y=0

p(x, y)ψbi,m,n(x, y) (4)

where i0 is an arbitrary starting level/scale and the WTϕ(i0,m, n) coefficients define ap-
proximation of p(x, y) at scale i0. Here, (m,n) determines the position of wavelet function.
The WT bψ(i,m, n) defines horizontal, vertical, and diagonal details for scales i ≥ i0. Given

WTϕ and WT bψ of Equation (3) and Equation (4), p(x, y) is obtained via inverse DWT as:

p(x, y) =
1√
PQ

∑
m

∑
n

WTϕ(i0,m, n)ϕi0,m,n(x, y)

+
1√
PQ

∑
b=H,V,D

∑
i≥i0

∑
m

∑
n

WT bψ(i,m, n)ψbi,m,n(x, y)
(5)

An N -level DWT gives rise to (3N +1) subbands, one approximation band at the final
level of decomposition and three detail bands (H, V, and D) at each level of decomposition.
The coefficients of approximation band and the detail bands of each level form the feature
vector or decomposition vector [A(N), H(N), V (N), D(N), H(N − 1), V (N − 1), D(N −
1), . . . , H(1), V (1), D(1)].

In this paper 3-, 5-, 7-, and 9-level of wavelet decomposition are performed by Daubech-
ies-4 (dB4) mother wavelet on the green channel to study the diagnostic information of
the pathological features from the color fundus images. The dB4 is nearly symmetric
compared to dB2. Daubechies-4 mother wavelet is orthogonal and has finite vanishing
moments [12]. This property ensures that the number of non-zero coefficients in the
associated filter is finite. This is very useful for local analysis. It closely matches to the
signal to be processed. So, dB4 is suitable for biomedical images and signal processing
applications [13]. The different levels of wavelet decomposition on the fundus images
generate one approximation band at final level and 9, 15, 21, 27 number of detail bands
at 3-, 5-, 7-, and 9-level wavelet decomposition, respectively. As each subband contains
the anatomical and pathological feature information from the diagnostic point of view, it
is important to know the significance of each subband in each level of decomposition. This
analysis of feature information in different subbands for different levels of decomposition
is performed in two ways. In the first case, the detail subband coefficients of one level
are altered at a time without unaltering the other detail subband coefficients. In the
second case, one of the detail subband coefficients are unaltered by altering the rest of
the subband coefficients.

2.1. Analysis of microaneurysms and hemorrhages in wavelet subbands. In this
subsection, the pathological features such as microaneurysms and hemorrhages are an-
alyzed in different subbands of 3-, 5-, 7- and 9-level of wavelet decomposition by dB4
mother wavelet. In the green channel image, they appear as darker spots compared to
the background. Hemorrhages appear as red cluster/patches in the retinal image. They
look like a darker patch. Hemorrhages and microaneurysms are similar in color to that of
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the blood vessel. Before finding the feature information they are cropped from the other
regions of the retinal image to have a detail information. The microaneurysm feature is
cropped from the green channel image, as this channel is moderately saturated compared
to the blue channel and red channel image. Different levels of wavelet decompositions are
applied to this image for multiresolution analysis (MRA) of the microaneurysms informa-
tion in different wavelet subbands.

Three level (3-level) wavelet decomposition process generates one approximation band
at the third level of decomposition and three detail subbands at each level (L1 (H 1, V 1,
D1), L2 (H 2, V 2, D2), and L3 (H 3, V 3, D3)). To illustrate the importance of subbands
at each decomposition level the images are reconstructed after zeroing/altering the co-
efficients of one level at a time or unaltering the coefficients of any one level at a time.
The reconstructed images are shown in Figure 1. Figure 1(a) is the high contrast DR
fundus image, whereas Figure 1(b) is the reconstructed image. The final level approxi-
mation band image is shown in Figure 1(c). The features appear to be similar in these
reconstructed images. Figure 1(d), Figure 1(e) and Figure 1(f) are the reconstructed im-
ages after zeroing the coefficients of L1 (H 1, V 1, D1), L2 (H 2, V 2, D2), and L3 (H 3,
V 3, D3) subbands, respectively. Figure 1(g), Figure 1(h) and Figure 1(i) are the images
reconstructed after unaltering the coefficients of L1, L2, and L3 subbands, respectively,
whereas other subbands coefficients are made zero. It is observed that the diagnostic
features are well reconstructed in three level wavelet decomposition and hence the overall
image quality is good compared to the original image.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 1. Microaneurysm feature analysis in different subbands of 3-level
wavelet decomposition: (a) high contrast green channel image, (b) recon-
structed image, (c) reconstructed image considering approximation band
coefficients, (d) reconstructed image zeroing L1 (H 1, V 1, D1) coefficients,
(e) reconstructed image zeroing L2 (H 2, V 2, D2) coefficients, (f) recon-
structed image zeroing L3 (H 3, V 3, D3) coefficients, (g) reconstructed
image unaltering only L1 coefficients, (h) reconstructed image unaltering
only L2 coefficients, (i) reconstructed image unaltering only L3 coefficients

For further analysis of the microaneurysms feature, the level of decomposition is in-
creased to fifth level. Figure 2 shows analysis of different subbands in 5-level wavelet
decomposition. The same procedure is followed to that of the third level wavelet de-
composition. Figure 2(a) to Figure 2(e) are the reconstructed images after zeroing the
coefficients of L1-subband to L5-subband, respectively. Similarly, Figure 2(f) to Figure
2(j) are the images obtained by unaltering the coefficients of L1-subband, L2-subband,
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(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 2. Microaneurysm feature analysis in different subbands of 5-level
wavelet decomposition: (a)-(e) reconstructed images by zeroing L1 to L5
subband coefficients, (f)-(j) reconstructed images by unaltering L1 to L5
subband coefficients, respectively and altering the coefficients of other sub-
bands

L3-subband, L4-subband, and L5-subband, respectively and zeroing the rest subband co-
efficients. From Figure 2(a), Figure 2(b) and Figure 2(c) it is clear that L1, L2, and
L3 subband coefficients are not influencing the microaneurysm features much. The mi-
croaneurysm and the hemorrhages are affected by altering the coefficients of L4 and L5
subbands coefficients. Figure 2(d) and Figure 2(e) are the reconstructed images obtained
after zeroing the coefficients of L4 and L5 subband coefficients, respectively. It is observed
that the microaneurysm feature is not reconstructed properly and the overall quality of
this feature is reduced. Similarly, Figure 2(f) to Figure 2(j) are reconstructed by retaining
the coefficients of L1 to L5 subbands, respectively and zeroing the rest of the subband
coefficients. This does not affect the reconstruction of the DR feature much when the
coefficients of L4 and L5 subbands are present. The reconstructed images are shown in
Figure 2(i) and Figure 2(j), respectively. The diagnostic feature is influenced when the
coefficients of L4 and L5 subbands are made zero. In Figure 2(f) to Figure 2(h), the
coefficients of L4 and L5 subbands are zero. So, the feature is not reconstructed prop-
erly. Retaining the coefficients of L4 and L5 subbands the quality of the DR feature in
the reconstructed image is not degraded. It is observed that any alteration in subband
coefficients of L4 and L5 will affect the diagnostic information in the 5-level of wavelet de-
composition. It may be concluded that the coefficients of L4 and L5 subbands contribute
more towards DR feature information in a five-level wavelet decomposition.

To have a better understanding of the diagnostic feature distribution (microaneurysms)
in different reconstructed subbands the level of decomposition is increased (7-level and
9-level). In 7-level, it is observed that the subbands of L5, L6, and L7 have significant
microaneurysm and hemorrhages information. It may be concluded that subbands L5 and
L6 contribute more towards the microaneurysms features in 9-level wavelet decomposition
compared to L7, L8, and L9 subbands. Thus, it is observed that the higher subbands
contribute more towards diagnostic feature information for microaneurysms and hemor-
rhages.

2.2. Analysis of exudates in wavelet subband. In this subsection, exudates are an-
alyzed in different subbands of 5-, 7- and 9-level wavelet decomposition. Exudates are
more prominent diagnostic features than the microaneurysms and hemorrhages. For anal-
ysis, green channel image is used and the decomposition is performed in the same way as
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that of microaneurysms and hemorrhages. Figure 3 shows the appearance of the exudates
in different subbands for a five-level wavelet decomposition. In this case, the subband
images are reconstructed in the same way as discussed in the previous subsection. The
images shown in Figure 3(a) to Figure 3(e) are formed by altering coefficients of L1 to L5
subbands, respectively. The images shown in Figure 3(f) to Figure 3(j) are reconstructed
by retaining the coefficients of one subband at a time and altering the values of other sub-
band coefficients to zero. Subbands L4 and L5 have the blood vessel (BV) information.
By altering L4 and L5 coefficients to zero, blood vessels information is reduced and the
reconstructed images are shown in Figure 3(d) and Figure 3(e). The exudate information
is preserved in L1, L2 and L3 subbands with less information about the blood vessels.
In Figure 3(f), Figure 3(g), and Figure 3(h) only L1, L2 and L3 subband coefficients are
present. It is observed that combining the coefficients of L1, L2, and L3 subbands, the
exudate information can be preserved and the BV information can be suppressed. In Fig-
ure 4 selective subband coefficients are combined and other subband coefficients are made
zero for reconstruction of the exudates. For the image shown in Figure 4(a), L4 and L5
subband coefficients are reduced to zero and L1, L2 and L3 subband coefficients are kept
unaltered. In this case, blood vessels are seen with the exudates. For the image shown
in Figure 4(b), L1 subband and L2 subband coefficients are retained with L3-subband,

(a) (b) (c) (d) (e)

(f) (g) (h) (i) (j)

Figure 3. Analysis of exudates in different subbands of 5-level wavelet
decomposition: (a)-(e) reconstructed images by zeroing L1 to L5 subband
coefficients, respectively, (f)-(j) reconstructed images by unaltering L1 to
L5 subband coefficients, respectively and altering other coefficients

(a) (b)

Figure 4. Exudates information in the combination of different subband
coefficients in 5-level wavelet decomposition: (a) reconstructed image with-
out altering L1, L2 and L3 subband coefficients only, (b) reconstructed
image without altering L1 and L2 subband coefficients only
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and L4-subband and L5-subband coefficients are made as zero. It can be observed that
the exudates are preserved and the blood vessels are present with very low contrast. The
quality of exudates is better compared to the other cases.

For further analysis of exudates in the wavelet subbands, the decomposition level is
increased (7-level and 9-level). In 7-level wavelet decomposition, it is observed that the
coefficients of L4, L3, and L2 subbands do not contain significant exudate information.
The most important subbands contributing to exudate information are L7, L6, L5, and
L1. In 9-level decomposition, it is observed that the coefficients of L9, L5, L4, L3, and L2
subbands do not contain significant exudate information. The most important subbands
contributing to exudate information are L8, L7, L6, and L1.

3. Quantitative Evaluation of Diagnostic Features in Wavelet Subband. Mul-
tiscale analysis of diagnostic features (microaneurysms, hemorrhages, and exudates) is
tested on DRIVE database [14], ARIA database [15], and Messidor database [16]. DRIVE
database contains 40 test images, compressed in TIF format of 512 × 512 pixels. The 40
images are divided into test set and training set, each of which contains 20 images. For
each image in test set and training set manual segmentation data is available. ARIA
database contains 129 pathologically affected images, compressed in JPEG format. In
this work, sensitivity (SEN) [17], specificity (SPF) [18, 19], sensibility (SEB) [20, 21],
accuracy (ACC) [18, 22], equal error rate (EER), mean square error (MSE), root mean
square error (RMSE) [23], peak signal to noise ratio (PSNR) [23], mean absolute error
(MAE) [23, 24], Pearson correlation coefficient (PCC) [23, 24], universal quality index
(UQI) [19], structural similarity (SSIM) [25, 26] are used to evaluate quantitatively the
diagnostic information present in different wavelet subbands.

Microaneurysms and hemorrhages are extracted by mathematical morphology based
method from the original image and the reconstructed image is obtained by 5-level and
7-level wavelet decomposition. The green channel of the fundus image is considered and
the image is resized to 512×512. The resized image is subjected to histogram equalization
to enhance the contrast of the image. Edge detection technique by the canny detector is
applied for detection of the edges. Then any border of the image is removed. Further,
the mathematical erosion and dilation are performed with the disk structuring element.
By using threshold the microaneurysms are extracted. The images are compared by
different performance measures and the values are tabulated in Table 1. In 5-level of
wavelet decomposition the quantitative values, specificity and accuracy are higher for the
L5 subband. For lower subbands these values are low.

Table 1. Performance measure values of extraction of microaneurysms in
different level subbands in 5-level wavelet decomposition

Reconstructed image SEN (%) SPF (%) SEB (%) ACC (%) EER (%)

L1 79.96 62.80 37.20 63.42 18.29
L2 62.78 58.45 41.55 58.47 20.76
L3 63.08 73.71 26.29 73.22 13.39
L4 60.61 76.63 23.37 75.90 12.05
L5 59.28 77.44 22.56 76.65 11.67

Quantitative values (specificity and accuracy) are higher for the L5 wavelet subband.
For lower subbands (i.e., L2), these values are found to be low. The accuracy value is
found to be the highest for L5 subband, i.e., 76.65%. The value is the lowest in L2
subband, i.e., 58.47%. Equal error rate (ERR) is found to be the least, i.e., 11.67%
for L5 subband. As the accuracy and specificity values are higher in L5 wavelet subband
compared to the other subbands, it may be concluded that the microaneurysm information
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in L5 subband is more. Thus, it is observed that the higher subband contributes more
towards the microaneurysms information.

To study the variation of different performance measures across different images, box-
plots for all subbands are shown in Figure 5. On each box, the central mark is the median,
the edges of the box are the 25th and 75th percentiles, the whiskers extend to the most
extreme data points the algorithm considers. The boxplots for specificity, accuracy, and
equal error rate of sixty images for different wavelet subbands in 5-level wavelet decom-
position are shown in Figure 5. From the boxplot, it is found that the average specificity
and accuracy values for L5 subband are higher compared to the other subbands. For L2
subband, these values are the least. Thus, it can be concluded that more microaneurysm
information is available in higher wavelet subband compared to the lower wavelet subband.
The equal error rate is found to be the least in L5 subband.
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Figure 5. Boxplots for specificity, accuracy and equal error rate for differ-
ent subbands in 5-level wavelet decomposition (by unaltering one subband
coefficient at a time) for sixty images

Exudates are extracted from the original image and from the reconstructed images for
different level decomposition and they are compared by the above-mentioned metrics to
know the contribution of the different level subbands towards exudates information. Table
2 shows the performance measure values of the extraction of exudate features in different
level subbands. In this table, L1 to L5 represent the reconstructed images by considering
only one subband coefficients at a time, i.e., L1 to L5 subbands, respectively and the
rest of the subbands coefficients are made zero. The reconstructed image L1 contains
the L1 subband coefficients only and all other level subband coefficients are altered and
made to zero. From each reconstructed image the exudates are extracted for finding the
contribution of subband coefficients towards exudates information. Similarly, ‘Zero L1’
to ‘Zero L5’ represent the reconstructed images by making L1 to L5 subband coefficients
are zero, respectively and unaltering the other subband coefficients. In the reconstructed
image ‘Zero L1’, the coefficients of L1 subband are zero and the rest subband coefficients
are present. Depending on the contribution of exudates for a particular subband, suitable
subbands are combined to study the exudate information. For each case, the performance
is calculated. The extraction of exudate in L4 and L5 reconstructed images provides
higher accuracy. However, the extracted exudates in L4 and L5 reconstructed images
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Table 2. Performance measure values of extraction of exudates in different
level subband in 5-level wavelet decomposition

Reconstructed
image

SEN
(%)

SPF
(%)

SEB
(%)

ACC
(%)

EER
(%) MSE RMSE PSNRv

(dB) MAE PCC UQI SSIM

L1 98.49 70.32 29.68 71.56 14.22 0.02 0.12 66.63 0.04 206852.10 0.59 1.00
L2 98.64 70.62 29.38 71.86 14.07 0.01 0.12 66.70 0.04 208036.17 0.59 1.00
L3 99.25 71.34 28.66 72.57 13.71 0.01 0.12 67.06 0.04 212871.51 0.59 1.00
L4 99.54 71.21 28.79 72.46 13.77 0.01 0.11 67.49 0.03 217995.65 0.57 1.00
L5 99.71 80.61 19.39 81.47 9.26 0.01 0.11 67.64 0.03 218793.29 0.66 1.00

Zero L1 99.99 95.70 4.29 95.90 2.05 0.00 0.04 75.90 0.01 256179.68 0.90 1.00
Zero L2 99.99 92.89 7.10 93.22 3.39 0.00 0.04 75.73 0.01 256006.03 0.84 1.00
Zero L3 100 88.51 11.49 89.03 5.49 0.00 0.05 73.98 0.01 253085.33 0.76 1.00
Zero L4 100 82.07 17.93 82.88 8.56 0.00 0.06 72.72 0.02 250233.77 0.69 1.00
Zero L5 100 72.65 27.35 73.85 13.07 0.00 0.06 72.19 0.02 248863.90 0.62 1.00

highlight some blood vessels. Zeroing the L1 subband and L2 subband does not affect
much in the accuracy for extraction of exudates, which are found to be 95.90% and 93.22%,
respectively. The accuracy value is reduced to the lowest when L5 subband coefficients are
made zero, which is found to be 73.85%. The structural changes are calculated by MSE,
RMSE, PSNRv, PCC, UQI, and SSIM. Extraction of exudates in the reconstructed image
L5 provides higher PCC, ACC and SSIM measures. In L5, only L5 subband information is
present. Making the L5 subband coefficients zero, the performance values in the extraction
of exudates reduce in the reconstructed image.

4. Conclusions. In this paper, diagnostic information (microaneurysms, hemorrhages,
and exudates) of the fundus images is studied in different wavelet subbands for various
levels of wavelet decomposition. The fundus image is decomposed into 3-, 5-, 7- and
9-levels by dB4 mother wavelet. From the above study, the following conclusions can be
drawn.

In 3-level wavelet decomposition, all the subbands contribute equally to the diagnostic
feature MAs. In 5-level wavelet decomposition subband L1, subband L2 and subband L3
contain less information about the MAs. Most of the diagnostic information is present
in subband L4 and subband L5 in 5-level wavelet decomposition. So, during the analysis
of microaneurysms, higher attention should be given to the coefficients of L4 and L5
subbands. In 7-level wavelet decomposition, L5, L6, and L7 contribute more information
towards MAs. Subband L5 to subband L9 coefficients contain higher MAs information
compared to other levels. Higher subband coefficients contain more MAs information
compared to lower level subband coefficients. In 5-level wavelet decomposition subband
L1, L2 do not contain much diagnostic information about exudates. The subbands L4 and
L5 contain more blood vessel information. From the quantitative evaluation, it is found
that L5 subband in 5-level wavelet decomposition contains higher exudate information.
Combining the coefficients of subbands L1, L2, and L3 the exudate information can
be preserved, and the blood vessel information can be suppressed. In 7-level wavelet
decomposition subband L1, L2, L3, L6 and L7 contain the exudate information. The
subbands L2, L3, and L4 do not contain significant information about the DR feature. In
9-level wavelet decomposition blood vessels information is present in L4 and L5 subbands.

The analysis presented in the work gives the diagnostic information in different wavelet
subbands. It is observed that only a few subbands contain significant diagnostic infor-
mation, and only such subbands are needed to be preserved for further analysis, storage,
and transmission. This helps design computationally efficient classification techniques of
the features which result in faster remote diagnosis. This method can also be extended
for other medical images for analysis and remote diagnosis.
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