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Abstract. With the continuous development of technology, the realization of self-driving
cars is getting closer and closer to our life. Obviously, road condition recognition is un-
doubtedly the premise and component of this technology. In this paper, a new road condi-
tion recognition method based on Classification And Regression Tree (CART) technology
is realized. First, we process the original Oxbotica data to get a data set consisting of
nine sensors information that can describe the vehicle’s driving. We then generate a
CART model using the training data set. Finally, we test the model and calculate some
evaluation indicators to evaluate our model. The results show that our method performs
well for the identification of six types of road conditions.
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1. Introduction. With the continuous development of technology, the practical applica-
tion of driverless cars is no longer an unreachable dream. More and more companies and
organizations have joined the research on self-driving cars. In 2016, Google announced
the establishment of Waymo, continuing its in-depth research in the field of unmanned
driving, and in 2018, the total test distance of Google’s self-driving cars reached 8 million
miles. In addition, Baidu, Tesla, Renault, Uber, and Didi companies have also started
their own self-driving cars research projects [1-4].

Obviously, for the research of self-driving technology, the first thing that needs to be
realized is the identification of different road conditions. In the process of realizing road
condition recognition, researchers have adopted different methods [5].

Some researchers extract effective information from images or real-time videos and
combine other technologies to achieve road condition recognition. Nugraha et al. used
YOLO, a real-time convolutional neural network, to extract traffic information from real-
time video [6]. Bi et al. constructed a neural network classifier based on RBF by extracting
velocity information and luminance information from traffic video, and achieved good
results [7].

However, it can be seen that the above methods have high requirements on the camera,
they can be easily affected by the environment, and the computing resources occupied are
also large. So some researchers use sensor data for research. Based on the radar sensor,
Lee et al. designed the sensor fusion algorithm and solved the road recognition problem
under different weather conditions [8]. Therefore, the data set processed and used by us
is real-time vehicle driving data collected by multiple sensors.

In this paper, we process and obtain the above mentioned data set, use it to train
the CART decision tree model, and finally realize the recognition of road condition. It
provides an accurate, efficient and novel solution for road condition recognition in the
field of self-driving research.
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The rest of this paper is organized as follows. Section 2 briefly analyzes the principles
of CART and describes the data sets used in this paper. In addition, some evaluation
criteria are introduced. Section 3 describes the process of the experiment and analyzes
the results in detail. Finally, some conclusions are provided in Section 4.

2. Theories and Preliminaries.

2.1. CART. The decision tree is an algorithmic model with a tree structure and clas-
sification ability. In terms of structure, the decision tree consists of internal nodes, leaf
nodes and directed edges. We can regard the decision tree as a set of if-then rules: the
path from the root node to a leaf node constitutes a rule, and the internal nodes it passes
correspond to the conditions of that rule, and the leaf node is the result of that rule.
Commonly used decision tree algorithms include ID3, C4.5 and CART [9].
Compared with other decision tree algorithms, the CART algorithm used in this paper

has some differences in structure and principle. CART is a binary tree structure, that
is, each internal node divides the input set into two subsets according to the rules. The
schematic diagram of the CART model structure is shown in Figure 1. Letters A, B,
and C in that figure are different features of the data, and letters a-e represent different
values.

Figure 1. Schematic diagram of CART model structure

For the decision tree, the most important thing is the splitting of the nodes. In the case
of classification, CART uses the Gini index to select the optimal feature and determines
the optimal binary segmentation point of it [10].
The calculation process of the Gini coefficient is as shown in Equation (1):

Gini(D) =
K∑
k=1

pk(1− pk) = 1−
K∑
k=1

p2k (1)

where D is the data set, and there are K types of data. pk is the probability that the
sample points belong to the kth class. Intuitively, the Gini index reflects the probability
that two samples are randomly drawn from the data set with different categories. The
smaller the value, the less the different categories of data contained in the data set.
For CART, the calculation process of the Gini index is as shown in Equation (2):

Gini(D,A) =
|D1|
|D|

Gini(D1) +
|D2|
|D|

Gini(D2) (2)

where D1 and D2 are the two subsets of the original data set D that are split according
to the value of feature A.
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According to the above formula, the CART model is generated by recursive method:
calculating the Gini index of each feature in the training set, selecting the optimal feature
and the optimal segmentation point, dividing the data into two parts, and then circulating
the above process until the stop condition is satisfied.

2.2. Evaluation criteria. In evaluating the binary classifier, previous researchers intro-
duced some concepts. First, consider a classification result as “True”, and then define
several parameters such as True Positive (TP), False Negative (FN), False Positive (FP),
and True Negative (TN), and these parameters form a binary confusion matrix [11-13].
Then, based on these parameters, some indicators, including Accuracy (Acc), Precision
Rate (PR) and Recall Rate (RR), are calculated as shown in (3), (4) and (5):

Acc =
TP + TN

TP + TN + FP + FN
(3)

PR =
TP

TP + FP
(4)

RR =
TP

TP + FN
(5)

Accuracy calculates the proportion of correctly predicted samples to the total samples,
representing the accuracy of the overall prediction. In the samples predicted to be “True”,
the proportion of the samples whose real value are also “True” is PR. Then RR calculates
the proportion of samples that are predicted to be “true” among the samples that are
actually “true”. In the application of PR and RR, the complex impact needs to be
considered. Therefore, two indicators are introduced here, namely F-score and G-score,
which can combine PR and RR, to examine the performance of the classifier. Their
calculation formulas are shown in (6) and (7):

F-score = 2 · PR ·RR

β2PR +RR
(6)

G-score =
√
PR ·RR (7)

A multi-classifier can be considered as a combination of multiple binary classifiers.
Therefore, when evaluating the multi-classifier performance, we first calculate the confu-
sion matrix and performance indicators of each binary classifier, and then calculate the
performance indicators of the multi-classifier based on these results. In addition to calcu-
lating the average of F-score and G-score, this paper also introduces a Kappa Coefficient
for evaluating the consistency of each subclass [14].

Suppose the data set has n pieces of data, which are divided into K categories. The
actual numbers of each type of samples are a1, a2, . . . , aK , and the predicted numbers are
b1, b2, . . . , bK , respectively. Then the calculation of multi-classifier performance indicators
is shown in Equations (8) and (9):

Avg .F =
K∑
k=1

F-scorek
K

; Avg .G =
K∑
k=1

G-scorek
K

(8)

Kappa =
Acc −

∏K
1 ak·bk
n·n

1−
∏K

1 ak·bk
n·n

(9)

2.3. Data set. The original data set used in this article is called “2018-2-23-11-47-15-
autonomy-long-route-04”, which comes from available Oxbotica data. It is a complex
data set collected by installing various sensors and cameras on the Nissan experimental
vehicle [15].

The data set consists mainly of two parts. The first part is the massive car driving
information collected by various types of sensors. The second part is 2d-cost maps (road



1118 C. ZHANG, S. CHAI, L. CUI AND B. ZHANG

condition maps) used to indicate the driving status of the car, which are obtained by
processing the real-time road condition images.
This paper has processed the original data set to get a new data set suitable for use.

First, since the original data set collected too many sensor signals, many of them belonged
to meaningless signals, so nine kinds of vehicle travel information from four types of signals
were manually selected from them as the characteristics of the data set. The feature details
are shown in Table 1.

Table 1. Data set feature

Types Index Feature

Steering related signals
1 steering angle deg
2 angl sensor deg

Brake related signals
3 pressure sensor valve in bar
4 brake fluid pressure

Speed related signals

5 wheel speed rear left rpm
6 wheel speed rear right rpm
8 displayed speed kph
9 speed*2.2369362920544

Acceleration sensor signals 7 yaw rate deg per sec

Then, using the corresponding cost map data set, the sensor data set of the reselected
feature is tagged, and the data set is divided into six types of road conditions. Finally,
50,000 samples were randomly selected from the new tagged data set as the training
dataset, and the remaining 7,781 were used as test dataset. The data set details are
shown in Table 2.

Table 2. Data set detail

Types Training dataset Testing dataset
Straight 30,012 4,573
Crossing 3,926 611
Curve 7,752 1,245

Roundabout 5,165 836
Deceleration 2,457 403
Cars meeting 688 113

Total 50,000 7,781

3. Experimental Process and Results Analysis.

3.1. Workflow. This paper designs a road condition recognition system based on CART
classifier, which can provide decision information for driverless cars. The overall workflow
of the system training and testing is shown in Figure 2.
In practical applications, the signals collected are processed according to the data set

production process, and can be directly sent to the CART classifier constructed in this
paper for classification, realizing the real-time vehicle driving condition detection.

3.2. Analysis of results. The CART model is generated using the prepared training
data set, and the resulting decision tree model is shown in Figure 3.
It should be noted that since the number of CART model nodes obtained is up to

2767, only a part of the model can be given in the figure. Taking the root node as an
example, our model divides the data set into two categories according to the two judgment
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Figure 2. The overall workflow of training and testing

Figure 3. Part of the CART model generated in this paper

conditions of ‘x5 < 288.188’ and ‘x5 >= 288.188’, that is, the data set is divided into two
parts according to the value of the fifth feature. The splitting process of the other nodes
is similar.

After generating the CART model through the training data set, input the test data set
to get the corresponding results and analyze the performance of the CART model. The
corresponding confusion matrix is shown in Figure 4. We can get the relationship between
the actual number of six road conditions in the data set and the predicted results from it.
Take “Straight” as an example. There are 4573 samples (sum of horizontal axis values) in
the dataset, and they are predicted as six types of road conditions. The predicted number
of each class is equal to the value corresponding to the horizontal axis, as there are 4487
correctly predicted as “Straight”. Then we can get Figure 5, which contains six binary
confusion matrices, with similar meanings to the above analysis.

We can calculate the values of TP, TN, FP, and FN corresponding to each type of test
result from the six sub-confusion matrices in the figure. Then we can calculate the PR,
RR, F-score, and G-score values for each type of test result, as shown in Figure 6.

We can analyze the recognition performance of each of the six road conditions accord-
ing to Figure 6. For Straight and Deceleration, the precision is slightly lower than the
recall rate; for Crossing, Curve and Cars meetings, the recall rate is slightly lower than
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Figure 4. Confusion matrix corresponding to the test result

Figure 5. Binary confusion matrices obtained by splitting

the precision. For Roundabout, the two indicator parameters are almost identical. Con-
sidering F-score and G-score, except for Crossing, its value is 89.2%, and the values of
other five situations are higher than 90%. In general, the recognition of each of the six
road conditions is excellent.
From a general perspective, the performance indicators are shown in Table 3.
From the perspective of the entire system, the average value of F-score and G-score is

equal to 0.945, indicating that the system’s precision and recall are excellent. The value of
Acc is 0.9618, which means that the recognition accuracy is high. The Kappa Coefficient
has a value of 0.937, representing that the consistency after classification is great, which
also indicates that the recognition accuracy is excellent.
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Figure 6. Six types of road condition classification performance indicators

Table 3. Comprehensive performance indicators of multiple classifiers

Avg.F Avg.G Acc Kappa
Value 0.945 0.945 0.9618 0.937

4. Conclusions. In order to provide accurate and effective decision-making information
for autonomous vehicles, research on road condition identification is very important. This
paper proposes a new road condition recognition method using CART technology, which
can accurately identify different road conditions. After some experiments, we can prove
that the method does have excellent performance in accurately identifying the six types
of road conditions. In future research, we can increase the variety of road conditions and
optimize the classifier to improve its accuracy.
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