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Abstract. We exploit an effective approach to incorporating structural dependencies
into the attention-based encoder-decoder model for machine translation by using Graph
Convolutional Networks (GCNs), a recent type of neural network architecture designed
for working on graphs and leveraging their structural information. Our GCNs use the
syntactic dependency trees of source sentences to produce word representations which are
sensitive to their syntactic neighborhoods. As GCNs’ input and output are both word
representations, they can be easily integrated as extra layers into the standard encoders
(e.g., on top of bidirectional Recurrent Neural Networks or Convolutional Neural Net-
works). We also evaluate their effectiveness for English-Vietnamese translation in the
different types of encoders and observe improvements comparing to their versions with
no linguistic information in all considered setups.
Keywords: Graph convolutional network, Recurrent neural network, Convolutional
neural network, Sequence to sequence model, Structural dependency, Word segmenta-
tion, Neural machine translation

1. Introduction. Neural Machine Translation (NMT) is one of the successful areas in
natural language processing which uses a neural network to predict the likelihood of a
sequence of words. In recent years, NMT systems have outperformed their phrase-based
statistical counterparts on many language pairs [1]. The current state of the art NMT
systems are based on the sequence to sequence learning, (e.g., encoder-decoder model)
[2, 3], and the lack of syntactic dependency or hierarchical structure of the language. One
reason for this is due to the fact that there are both very simple and effective methods
to integrate the syntactic dependencies into encoders. The common successful techniques
have been used such as modeling the interface between syntax and the translation tasks [4],
further extending the above model with tree-based coverage [5], or integrating syntactic
information in NMT models [6, 12], but they are either restricted or integrated in an
indirect approach. Therefore, we aim to provide the encoder with the ability to access
rich syntactic information of source sentences and let it decide which aspects of syntax
are beneficial for NMT, without placing the rigid constraints on the coordination between
syntax and the translation task [7].

Attention-based NMT systems [2, 8, 9] were introduced to alleviate the problem of the
encoder-decoder approach: encoding information of a source sentence into a fixed-length
vector, which has been shown to give the ineffective performance when dealing with the
long sentences. The attention mechanism represents the source sentence words as the
latent-feature vectors in the encoder and uses these vectors to generate the translation.
Our goal is to integrate the syntactic information about the neighborhoods of source words
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into these feature vectors, and, thus, potentially enhance the quality of the translation
output. We use the dependency syntax to achieve this, and the dependency tree represents
the syntactic relationship between the words in a sentence, for example, a is the determiner
of community, and big is an adjectival modifier of community as seen in Figure 1 below:

Figure 1. A dependency tree for the example sentence, “It is a big community.”

The first research on GCNs is presented in [10], which develops a variant of graph
convolution based on the spectral graph theory. The basic principle in a graph is that
each node is related to the neighbors via some complex linkage information, which is
used to capture the interdependence among data [11]. We exploit Graph Convolutional
Networks (GCNs) [7, 13, 14] to form the syntax-aware feature representations of words.
We use Syntactic GCNs, a version of GCN, operating based on the syntactic dependency
trees, as it is proven to be effective in the area of semantic role labeling [7, 15].
Though GCNs can be used separately in encoders (e.g., take word embeddings as in-

put), [7, 16] have shown that they are more efficient when used as the layers on the top
of Recurrent Neural Network (RNN) or Convolutional Neural Network (CNN) encoders,
enriching their states with the syntactic information. It has also been shown that RNNs
(e.g., LSTMs) are capable of capturing certain syntactic information (subject-verb a-
greement) themselves [17] and therefore, the comparison to RNNs is the most difficult
challenge for GCNs. However, even when compared to RNNs, GCNs still prove to be
beneficial: we obtain +0.15 BLEU score improvements in using syntactic GCNs on the
top of bidirectional LSTMs for English-Vietnamese.
Our contributions can be summarized as follows:

• Exploiting the method proposed by [7] to incorporate structure into NMT using
syntactic GCNs.

• Showing that CNN encoders can be improved with GCN layers on top to capture
long distant dependencies.

• And proving that machine translation on English-Vietnamese can benefit from inte-
grating syntactic information.

The rest of this paper is summarized as follows:

• Chapter 2 is the background to introduce the related concepts.
• We concentrate on how to integrate the structural dependencies in the encoder in
Chapter 3.

• The experiments and report results are conducted in Chapter 4 to verify the effec-
tiveness of the proposed method.

• The conclusions and future works are presented in Chapter 5.
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2. Background.

2.1. Sequence to sequence model. The idea of sequence to sequence model is to
transform the source sentence to the target sentence using 2 neural networks. It aims to
map a fixed length input with a fixed length output where the length of those may differ.
The model consists of three parts: encoder, context vector and decoder. The encoder
summarizes the source sentence into a context vector and the decoder unfolds this vector
into the target sequence.

Figure 2. Encoder-decoder sequence to sequence model

2.1.1. Recurrent neural network. Recurrent neural network based encoder-decoder archi-
tectures has been widely adopted in sequence to sequence modelling [2]. The encoder
RNN processes the input sequence x = x1, x2, . . . , xm where m is the number of the el-
ements then returns the context vector z. The decoder RNN takes z and generates the
output sequence y = y1, y2, . . . , yn. To create the element yi+1, the decoder computes the
new hidden state hi+1 from the previous state hi, the previous target language word yi
and a conditional input ci derived from the encoder output z. This approach uses the
past of a word to predict it; another approach called bidirectional RNN [28] can not only
summarize the past of a word but also its future. A BiRNN reads the input sentence in
the two directions and then concatenates the states at each time step. There are 2 famous
versions of RNN: LSTM [18] and GRU [19].

2.1.2. Convolutional neural network. Convolutional neural network is less common than
RNN for neural machine translation. Compared to the recurrent layers, the convolutions
create representation for the fixed number of words, which allows the encoder to capture
the local context within the sentences. The context size can be enlarged by stacking
several convolutional layers on top of each other. One advantage of CNN over RNN is
that it does not depend on the computations of the previous time step and therefore
allows parallel training over every element in a sequence. RNN, on the other hand, needs
the hidden state of the previous step to be calculated to continue training. Stacking
multi-layer convolutional neural networks create a hierarchical representation over the
input sequence where the higher the level and the wider the context. While the close
elements interact with each other at the first few layers, the distant elements interact at
the higher layers. (see Figure 3). The hierarchical structure provides a shorter path to
capture the long-range dependencies compared to the linked list alike the structure of
RNN, e.g., we can obtain a feature representation of a window of n words by applying
only O(n

k
) convolutional operation with the kernel width size of k, compared to the linear

number O(n) for RNN.
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Figure 3. Convolutional layers

2.2. Graph convolutional networks. Graph Convolutional Network (GCN) proposed
by [7] is a multi layer neural network that operates directly on graph and encodes the
information of the neighbor of a node. In each GCN layer, the information transfers along
the edge of a graph. We can get the information of the larger neighborhoods by stacking
multiple layers of GCNs on top of each other.
Considering an undirected graph G = (V,E) where V is the set of n nodes and E is

the set of edges. According to the authors every node is assumed to be connected with
itself. The new node representations are updated as follows:

hv = ρ

 ∑
u∈N(v)

Wxu + b


where W ∈ Rd×d is a weight vector matrix and b ∈ Rd is a bias vector, ρ is an activation
function such as ReLU. N(v) is the set of the node that connects with the node v,
which we assume here to include v itself all time. To allow the information to flow
over the multiple hops, we need to stack the multiple GCN layers. For example, in the
second layer, a node will receive the information from all of its immediate neighbors, but
this information already includes the information from their respective neighbors. The
recursive computation is computed as follows:

h(j+1)
v = ρ

 ∑
u∈N(v)

W (j)h(j)
u + b(j)


2.3. Syntactic GCNs. Syntactic GCN is a version of GCN proposed by [20] that op-
erates on directed and labeled graph. This makes it possible to integrate the linguistic
structures that are long forgotten such as the dependency trees or in our case, the struc-
tural dependency, where direction and edge labels play an important role.

2.3.1. Directions. We use separate weight matrices for outgoing, incoming and looping
the edges. We follow the convention in the lexical dependency that heads the point
to their dependents. Hence, the outgoing edges are used for the head to the dependent
connection, and the incoming edges are used for the dependent to the head connection. For
example in Figure 1, the word community points toward the word big, so the convention
community will be the head and the word big will be its dependent. We have the recursive
computation for direction as follows:
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h(j+1)
v = ρ

 ∑
u∈N(v)

W
(j)
dir(v,u)h

(j)
u + b

(j)
dir(v,u)


where dir(v, u) chooses the weight matrix associated with the direction of the edge that
connects v and u (Wout for v to u, Win for u to v and Wloop for v to itself).

2.3.2. Labels. The typed dependency captures enormous linguistic information in the sen-
tences, therefore using it as an additional input is straightforward. We use the type of
dependency between each word to label the edges connecting them (see Figure 1). As
seen in the paradigm of Direction, the separate weight matrices are used for each label,
the result in the computation as follows:

h(j+1)
v = ρ

 ∑
u∈N(v)

W
(j)
lab(v,u)h

(j)
u + b

(j)
lab(v,u)


Finally, to prevent over-parameterization, we combine the two following formulas, where

the weight matrices are made the direction-specific while the bias is made the label-
specific. This modification reduces the number of the learnable parameter while still
taking the two important factors into consideration. The syntactic GCNs also include the
gates to control the contribution of the individual edges. This allows the model to deal
with the noisy information such as the potentially erroneous directions and labels. For
each edge, a scalar gate is computed as follows:

δ(j)u,v = σ
(
h(j)
u w

(j)
dir(u,v) + b

(j)
lab(u,v)

)
where σ is the logistic sigmoid function, w ∈ Rd and b ∈ R are learned parameters for
the gates. The final computation becomes:

h(j+1)
v = ρ

 ∑
u∈N(v)

δ(j)u,vW
(j)
dir(v,u)h

(j)
u + b

(j)
lab(v,u)


3. Enhancing Sequence-to-Sequence Models with GCNs. In this section, we con-
centrate on integrating the syntactic information in the encoder. We hypothesize that
using an encoder with incorporating syntax will lead to the more informative word rep-
resentations; hence, when these representations are used as the context vectors by the
decoder, it will improve the translation accuracy. Therefore, in all of our sequence-to-
sequence models implemented by the fairseq toolkit1 [21], we keep the decoders part
unchanged (the convolutional sequence-to-sequence model and the BiLSTM sequence-to-
sequence model).

We define a series of encoders with increasing performance, where we exploit the power
of GCNs to incorporate the syntactic-aware representations.

3.1. BiRNN + GCN. In our first model, we use the bidirectional recurrent neural
networks. We start with encoding the source sentence using a BiRNN (i.e., BiLSTM)
and use the resulting hidden states as input for the GCN. Instead of only depending on
the linear order as usual for RNNs, the GCN will allow the encoder to traverse along the
dependency edges, connecting words that might be far apart in the sentence. The model
may also benefit from the fact that GCNs are capable of exploiting the nature of the
relations between words (i.e., dependency relation types) (see 2.3 for details). We assume
this to be the most challenging set up for GCNs, as RNNs have been shown to be capable
of capturing at least some degree of syntactic information [22], and therefore it should be
hard for them to improve performance by incorporating syntactic dependency.

1https://github.com/pytorch/fairseq
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3.2. CNN + GCN. In our second and most powerful model, we use CNNs to learn the
word representations. [16] shows that CNNs can give the competitive results comparing
to BiRNNs when the multiple layers of CNN are stacked, and they are also faster than
RNNs. As seen in their approach, we use GCN to enrich the 4-layer CNN representations.
We expect that the models should be beneficial based on the further propagating infor-

mation from the tree. We hypothesize that the first GCN layer is the most crucial one, as
it captures most of the syntactic context, and the additional layers only modify the word
representations modestly.

4. Experiments. We conduct the experiments using the fairseq toolkit [21], which im-
plements various sequence-to-sequence models in Pytorch. We use the Adam optimizer
[23, 24] with a learning rate of 0.001 (0.0002 for CNN models)2 , as well as the clip thresh-
old of gradients, which is set to 0.1. The batch size is 40, and the maximum number
of tokens in a batch is set to 4000. We apply the dropout with a probability of 0.2 be-
tween layers, and during the experiments with GCNs3 we use the same value for the edge
dropout. We also train for 60 epochs and evaluate the performance of the model every
epoch on the validation set. We choose the model with the highest validation BLEU for
testing purpose.
We will describe the details of the MT experiments below.

Data. For our experiments, we use the En-Vi data from the IWSLT 2015 dataset4 . We
train on the full data set. For our validation set and test set we use tst2013 and tst2012
respectively.
Preprocessing. Vietnamese words are not always separated as spaces as English words,
so sometimes, we need to perform the word segmentation as a pre-processing task. For
the experiments in Part 4.2, first, we do a word segmentation processing using the
Underthesea-Vietnamese NLP Toolkit5 for the Vietnamese sides. Then the following
procedures are applied for the experiments of both Parts 4.1 and 4.2: both English sides
and Vietnamese sides are tokenized, using the fairseq toolkit; and the English sides are
parsed into the dependency trees using the Stanford parser [25]. The sentence pairs where
either side is longer than 50 words are filtered after tokenization.
Vocabulary. For both the English and Vietnamese, we construct the vocabulary from
all words from the training set. The dataset statistics are described in Table 1 and the vo-
cabulary sizes are summarized in Table 2. The vocabulary size for the Vietnamese dataset
after the word segmentation processed is larger than its non-processed counterpart.

Table 1. The number of sentences in our data sets

Train Val. Test

English-Vietnamese 133317 1268 1553

Table 2. Vocabulary sizes

Source Target

English-Vietnamese 54176 25624

English-Vietnamese (segmented) 54176 44472

2As mentioned by [7], the learning rate of 0.001 for Adam is too aggressive for CNNs.
3GCN code is at https://github.com/bastings/neuralmonkey
4https://sites.google.com/site/iwsltevaluation2015/mt-track
5https://github.com/undertheseanlp/underthesea
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Hyperparameters. For BiLSTMs, we use 128 units for the word embeddings, 512 units
for the hidden size. For CNNs, we use 256 units for the word embeddings, 256 units for
the convolutional layers and the kernels of width 3. The dimension of the GCN layers is
equivalent to the dimension of their input. We report results for 1-layer GCNs, as when
we stack more than 1 layer, the result does not improve much, but the training time takes
much longer.
Evaluation. We report BLEU scores [26] using multi-bleu. We take the average results
over five runs of each model, where each differs in the weight initialization. Translation
is generated by a beam search with the width of 5.

4.1. Data with no word segmentation processed. We provide two baselines: a con-
volutional sequence-to-sequence model with window size w = 3 and a BiLSTM sequence-
to-sequence model.

Table 3 shows the test results on English-Vietnamese. The BiRNN, the strongest
baseline, reaches a BLEU4 of 23.68. Interestingly, GCNs is still able to improve the result
by +0.37 BLEU1 and +0.16 BLEU4 points. Although the CNN baseline is lower than the
BiRNN models for both BLEU1 and BLEU4 scores, the CNN + GCN model improves
over the CNN baseline by +3.38 and +1.64 for BLEU1 and BLEU4 respectively, which
beats the BiRNN + GCN model.

Table 3. Results for English-Vietnamese

BLEU1 BLEU4

BiRNN 54.75 23.68
+ GCN 55.12 23.84

CNN 52.5 22.53
+ GCN 55.88 24.17

Effect of GCN layers. How many GCN layers are efficient for training the models?
Table 4 shows validation BLEU performance for 1-layer and 2-layer GCNs, together with
the CNN baseline for English-Vietnamese. Using 1-layer GCN improves BLEU1 and
BLEU4 by +3.38 and +1.64, respectively. Surprisingly, adding an additional GCN layer
decreases performance by −0.35 and −0.153 for BLEU1 and BLEU4.

Table 4. Validation BLEU for 1-layer and 2-layer GCNs

BLEU1 BLEU4

CNN 52.5 22.53
+ GCN (1L) 55.88 24.17
+ GCN (2L) 55.53 24.017

4.2. Data with word segmentation processed. We provide the same CNN baseline
and CNN + 1-layer GCN baseline as those in 4.1 (non segmented).

Table 5 shows the test result on English-Vietnamese, with and without the word seg-
mentation. Surprisingly, the CNN model shows a drop in performance with −8.27 BLEU1

and −3.4 BLEU4, comparing to the CNN baseline. Using 1-layer GCN still improves
BLEU scores by +1.43 and +0.62, respectively, reaching a BLEU4 of 19.75. However, it
is still beaten by its counterpart – the CNN + GCN with non segmented data by −10.22
BLEU1 and −4.42 BLEU4.
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Table 5. Test results for English-Vietnamese

Segmented Non segmented

BLEU1 BLEU4 BLEU1 BLEU4

CNN 44.23 19.13 52.5 22.53
+ GCN 45.66 19.75 55.88 24.17

5. Conclusions and Future Work. The results depict that incorporating syntactic
information using GCNs consistently leads to improvements in translation performance
measured by BLEU1 and BLEU4. This gain in BLEU scores also shows that the improve-
ments correlate with word order, a phenomenon that depends undeniably on syntax.
As for the results in Table 5, one explanation might be that because our data set is small

(about 133000 sentences for the train set), and the vocabulary size for the Vietnamese
is larger than its counterpart in 4.1. Moreover, as the vocabulary size increases, the
number of words that appears only 1 time or too few increases, which makes it harder
for the model to learn. Neural machine translation has its limitation in handling a larger
vocabulary, as training complexity as well as decoding complexity increases proportionally
to the number of target words [27].
The reason why stacking 2 layers of GCN decreases BLEU scores a bit may be due to

the similar reason: our data set is small. As we stack more layers, the number of trainable
parameters increases, and hence the model must be trained with more data in order to
gain the better results.
This study, therefore, has shown that integrating the structural dependencies is ben-

eficial for NMT models and improves BLEU performances for the English-Vietnamese
language pairs.
In the future, we will train the model with more data in order to justify whether it

performs better on data with Vietnamese with word segmented or not, and based on this
we can find more effective ways to improve it.
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