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Abstract. The work developed in this paper proposes a method to detect bearing defects
and rotor bars breaking in induction motors based on a combination of two approaches:
wavelet multi-resolution analysis (WMRA) and empirical mode decomposition (EMD).
After applying these two methods to measured vibratory signals, we used the envelope
analysis to identify the characteristic frequency corresponding to the inspected defect
and the obtained results are satisfactory. To better identify the defects, a successive
combination of these two methods was performed while using the highest energy value.
The comparison between these two methods and their combination shows that successive
application of the WMRA and the EMD gives better defect identification.
Keywords: Induction motor, Diagnostics, Vibration analysis, Wavelet multi-resolution
analysis, Empirical mode decomposition

1. Introduction. In modern industry, most engines are three-phase squirrel-cage induc-
tion motors mainly due to their robustness and low cost [1]. Despite these advantages,
this type of engine is not free from failures as sometimes evidenced by bearing defects
or breaking of rotor bars. Hence, it is necessary to look for an appropriate diagnostic
method to identify defects.

Vibration analysis of electrical machines is the most common approach in modern in-
dustry, since it ensures detection, diagnosis and defects evolution [2,3]. The vibratory
signal, captured by a piezoelectric accelerometer is often mixed with uncertainties, which
makes identification of defects difficult or impossible. For this reason, it is necessary to
use statistical indicators such as the RMS value, the peak factor and kurtosis [4]. Unfor-
tunately, using of these indicators is limited since it does not allow diagnosing the type of
defect. To overcome this difficulty, the measured signal must undergo other treatments.
For a long time, the use of spectrum and cepstrum analysis has been reported in several
studies [5-8]. Spectrum analysis is a very useful tool for stationary signal analysis while
cepstrum analysis is a good complement to spectrum analysis. However, most of the
vibratory signals are non-stationary and non-linear, which can be considered as stringent
limitations. Such signals require a time-frequency analysis in order to locate the time
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periodicity [9]. This type of analysis reconciles the advantages of spectrum and cepstrum
analysis but the last one does not give significant results in the case of noisy signals which
have variable frequencies (non-stationary) [10]. In this case, a new approach based on
new filtering methods must be introduced to extract the defect signature from measured
signals. As an indication, we find the adaptive filtering [11], high frequency resonance
technique (HFRT) [12] and the continuous wavelet technique (CWT) [13], discrete wavelet
multi-resolution analysis (WMRA) [14] and the wavelet packet transform (WPT) [15,16].
A good review with applications of the wavelets for fault diagnosis of rotary machines is
proposed in [17]. Wavelet multi-resolution analysis was used by Djebala et al. using the
kurtosis as a criterion for optimization and evaluation. The obtained results show the
validity of this method in detecting several defects affecting bearings [14]. In addition,
Natu investigated bearing defects by using a two-level wavelet analysis [18]. However, one
of the limitations of wavelet multi-resolution analysis is the need to predefine the basic
functions for signal decomposition [19]. To overcome this difficulty, Huang et al. intro-
duced empirical decomposition analysis as a method of sub-band decomposition [20]. The
main advantage of the EMD is that the basic functions are derived from the signal itself
[21]. For instance, Selami et al. used the EMD to detect gear defects [22]. In addition, in
the work of Du and Yang carried out the decomposition of the real signal by both EMD
and WMRA. Then the envelope method was applied in each case and the results show
that the first method better locates frequencies of the bearing compared to the second one
[23]. In the same vein, Zhang et al. employed the EMD and envelope analysis to extract
the characteristic frequency of the rotor bars breaking in an induction motor [24]. So, to
improve the efficiency of this method, it must be combined with other methods such as
WPD and even more with intelligent methods such as neural networks. This combination
offers a very efficient method for obtaining an intelligent diagnosis.
The main contribution of this paper is the new proposed approach of defects diagnosis,

based on the successive combination of WMRA and EMD. This approach is validated with
vibratory signals measured on a recently designed test bench and the results are compared
with those obtained by EMD and WMRA. It has been found that the results obtained are
conclusive compared with the methods mentioned above. In addition, another comparison
made by recent research revealed that the proposed approach has better extraction of
defect frequencies as it supports the benefits of both methods (WMRA and EMD) [22,25].
The rest of this paper is structured as follows. A description of the test bench with

measuring equipment is presented in Section 2. Therefore, Section 3 presents a discussion
of the vibratory signal and the result of the application of the test of frequency analysis.
In addition, the theories of the two WMRA and EMD methods are briefly described in
the same section. The results obtained are presented and discussed in Section 4 where
the proposed approach to the diagnosis of defects by combining the two previous meth-
ods is presented and validated experimentally. Finally, conclusions and perspectives are
mentioned in Section 5.

2. Description of the Setup and the Measuring Equipment. The test bench is de-
signed at the Laboratory of Mechanics and Structure (LMS) of the University of Guelma.
It can simulate several defects on the induction motor such as rotor bar breaks, defects
in the bearings that carry the motor shaft and some other defects. This test bench, illus-
trated in Figure 1, is a very simple design for the rapid assembly and disassembly of the
rotors and bearings to be tested.
For every rotating machine, it is necessary to know the defect’s specific characteristic

frequencies which have a direct relation with the geometry of the organs and the rotation
speed developed by the machine. Table 1 summarizes the characteristic frequencies of the
two studied defects for two different rotation frequencies: FR = [12.375 and 17.125] Hz.
The induction motor power is 1.5 kW.
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Figure 1. Test stand & measuring equipment

Table 1. Defect frequencies

Types of defect Frequency signatures
Theoretical rotation
frequency FS (Hz)

Effective rotation
frequency FR (Hz)

Results (Hz)

Outer race FBE = Z/2 · [1− (d/Dm) cosα] · FR
12.5 12.375 42.94
17.5 17.125 60.95

Break of bars
FB = FR ± 2 · g · FA 12.5 12.375 12.375 ± 0.50

g = (FS − FR) /FS , FS = FA/P 17.5 17.125 17.125 ± 0.49

Here FR is the rotation frequency, Z is the number of balls, d and Dm are ball diameter and average
diameter of the bearings respectively, α is the contact angle, FA is the supply frequency, g is the motor
sliding, FS is the theoretical motor rotation frequency and P is the number of poles.

3. Results & Discussion. We realized a defect on the outer ring of the bearing on which
measurements were made in several frequency bands (low, medium and high frequency)
and for two motor rotation frequencies [12.375 and 17.125] Hz. Among the measured
signals, we used the one measured in the [0-6400] Hz band.

At first observation, the analysis of the measured signal and its spectrum do not show
any information on the presence of a possible defect. To be able to analyze the measured
signal, we proceed to their filtering to identify the defects by applying the two methods:
the wavelet multi-resolution analysis and the empirical mode decomposition methods. In
the continuation of this work we propose the application of these two methods, then their
combination to better filter the signals to ensure better identification of defects.

3.1. Wavelet multi-resolution analysis (WMRA) theory. A wavelet is a transfor-
mation allowing decomposition of a signal into several segments, and it is expressed by
the following relation:

ψa,b(t) =
1√
a

(
t− b

a

)
(1)

with a: scale parameter, b: translation parameter, ψ(t): mother wavelet.
One can express the transformation in continuous wavelet by

CWT (a, b) =
1√
a

+∞∫
−∞

s(t)ψ∗
(
t− b

a

)
dt (2)



1024 N. TALBI, A. METATLA, N. OUELAA, R. YOUNES, L. FATMI AND A. DJEBALA

The discrete form of the wavelet transformation is given by

DWT (m,n) = 2
−m
2

+∞∫
−∞

s (t)ψ∗ (2−mt− n
)
dt (3)

Or, n and m: are integers.
In 1989, Mallat developed a new version of the wavelet transform called wavelet multi-

resolution analysis [26]. It transforms the signal with different frequency bands and gives
a view from the finest to the largest. When a signal is passed through the two low-pass
(L) and high-pass (H) filters, two coefficients are obtained, one of approximation cAk and
the other of detail cDk. The new passage of the two coefficients cAk and cDk through the
two reconstruction filters (LR) and (HR) gives us the two new vectors of approximation
(Ak) and of detail (Dk) [14].

3.1.1. Case of a bearing defect. The decomposition based on WMRA was applied to the
measured signal in the frequency band [0-6400] Hz for a rotation frequency FR = 12.375
Hz in three levels, 3 details and 3 approximations, followed by a calculation of energy for
each case.
Figure 2(a) illustrates the reconstructed signal that was extracted from detail 1 (D1),

having the greatest energy and covering the [3200-6400] Hz frequency band. We find that
the impacts of the masked defect by the noise in the measured signal are very visible on
the filtered signal. An envelope spectrum calculated from the Hilbert transform of the
reconstructed signal clearly shows the frequency of the rolling fault at 42.94 Hz and two
of its harmonics, Figure 2(b).

(a) Detail signal D1 (b) Its envelope spectrum

Figure 2. Decomposition by WMRA (bearing defect)

3.1.2. Case of defect of bar breaks. The signal of Figure 3(a) was measured at low frequen-
cy in the band [0-100] Hz for the rotation frequency of 12.375 Hz. The broken rotor bar
defect was simulated by drilling the rotor. This signal does not reveal any information on
the state of the rotor. The spectrum of Figure 3(b) shows only the presence of the motor
rotation frequency and its harmonics. The increase of the amplitudes of the harmonics
means the presence of a misalignment.
In the same way, we have decomposed with the WMRA the signal measured in the

frequency band going from [0-100] Hz. The calculation of the energies of the details
and the approximations obtained always shows that it is the detail 1 (D1) which has
the greatest energy. Figure 4(a) shows the reconstructed signal of detail 1 (D1), and its
frequency band is taken between [50-100] Hz. The application of the Hilbert transform on
detail 1 is shown in Figure 4(b) clearly shows the appearance of two peaks corresponding
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(a) (b)

Figure 3. (a) Measured signal; (b) spectrum

(a) Detail signal D1 (b) Its envelope spectrum

Figure 4. Decomposition by WMRA (bar breaks defect)

Figure 5. Principle of the empirical modes decomposition

to twice the slip frequency (2 · g · FA = 0.5 Hz) and one of its harmonics, which confirms
the presence of a defect of breaks of bars.

3.2. Empirical mode decomposition analysis (EMD) theory. The decomposition
in empirical modes is a signal processing method created, in 1998 by the engineer Huang
[20] to decompose the signal by going from the highest frequencies to the lowest frequencies
into several oscillating components extracted directly from the signal adaptively and from
a residue. These components are called intrinsic mode functions (IMF) and are interpreted
as non-stationary waveforms, and they must satisfy two conditions [26]: (i) the number
of zero crossings and the number of extrema are equal to or no more than one; (ii) the
average value of the envelope produced by local extrema is zero.

The sieving process, corresponding to extraction of an IMF, from a given signal is
illustrated in Figure 5.
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3.2.1. Case of a bearing defect. We decompose the signal of Figure 2(a) with the EMD
method. This decomposition gives twenty-one IMF plus one residue. Figure 6(a) shows
the first IMF1, having the highest energy. Its envelope spectrum Figure 6(b) clearly shows
the frequency of a fault on the outer race, is 42.94 Hz and its harmonics.

(a) IMF1 signal (b) Its envelope spectrum

Figure 6. Decomposition by EMD (bearing defect)

3.2.2. Case of defect of bar breaks. In the same way, we decomposed using EMD the
signal of Figure 3(a). Figure 7 shows the first IMF and its envelope spectrum showing
the presence of the slip frequency (2 · g · FA = 0.5 Hz) and one of its harmonics.

(a) IMF1 signal (b) Its envelope spectrum

Figure 7. Decomposition by EMD (bar breaks defect)

4. Proposed Method and Its Application on the Measured Signal. To better
visualize and improve the results obtained by WMRA and EMD, we propose to combine
the two methods successively, one after the other and see which can provide a better
solution.
The three steps of the first combination are listed as follows.
1) The measured signal is decomposed by the WMRA in several details and approxi-

mations.
2) The detail or approximation with the highest energy value will be decomposed by

the EMD.
3) An envelope signal of the IMFs is calculated from the Hilbert transformation by

choosing the one that will highlight the characteristic frequency of the defect.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.10, NO.11, 2019 1027

The same steps are applied for the second combination while first decomposing the
signal measured by the EMD and selecting the IMF with the highest energy that will be
treated by WMRA.

4.1. Case of a bearing defect. First, begin with the successive application of WMRA
and EMD, choosing the detail or the approximation with the greatest energy. In this case,
the first detail is then selected and it will be processed by the EMD.

Results of the WMRA-EMD combination are shown in Figure 8. They show that the
first reconstructed IMF is more filtered, because its envelope spectrum clearly identifies
the presence of the frequency of a defect on the outer race at 42.94 Hz and two of its
harmonics. The results obtained are slightly improved compared to those obtained by
EMD alone.

(a) IMF1 signal (b) Its envelope spectrum

Figure 8. Decomposition by WMRA-EMD

Now, we apply to the measured signal the EMD then the WMRA. In the same way, we
choose the MFI with the highest energy. In this case, the first MFI is selected and will
be broken down by WMRA.

The results obtained from the EMD-WMRA combination are shown in Figure 9. They
show that the first reconstructed detail is more filtered. After being subjected to an
envelope analysis, we find that the envelope spectrum clearly identifies the presence of a
defect. On the outer ring, it manifests itself by the frequency of a defect of the order of
42.94 Hz as well as two of its harmonics.

(a) Detail signal D1 (b) Its envelope spectrum

Figure 9. EMD-WMRA decomposition
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4.2. Case of defect of bar breaks. The application of the WMRA-EMD to the mea-
sured signal allows us to select the first detail (D1), its treatment by EMD, has enabled
us to obtain the results illustrated in Figure 10.

(a) IMF1 signal (b) Its envelope spectrum

Figure 10. Decomposition by WMRA-EMD

The envelope spectrum of the first reconstructed IMF clearly shows the presence of
twice the slip frequency (2 · g · FA = 0.5 Hz) and its harmonic.
In the same way, we apply the EMD-WMRA to the measured signal. The first IMF

with the highest energy is treated by WMRA. The results obtained are shown in Figure
11. Only the first detail (D1) highlights the presence of the bar break defect by the
appearance of twice the slip frequency and one of its harmonics.

(a) Detail signal D1 (b) Its envelope spectrum

Figure 11. Decomposition by EMD-WMRA

Results obtained by the two consecutive WMRA-EMD and EMD-WMRA combina-
tions, for the two types of defects studied, confirm the results obtained by the application
of WMRA and EMD separately. In addition, the results obtained by the combination of
the two methods are slightly more informative, but they may be more effective in the case
of emerging defects.

5. Conclusions. In this paper, we have proposed a method based on the successive com-
bination of wavelet multi-resolution analysis and empirical mode decomposition analysis
to ensure a good filtering of noisy signals; thus, better detection of defects that affect
induction motors is assured.
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The application of this combination on the two studied defects allows reconstructing
clearer signals, which makes the extraction of the characteristic frequencies and their
harmonic significant.

The proposed approach is, only, adapted to the two studied defects. It, also, concerns all
the defects that affect rotating machines, because it takes account of the non-stationarity
of the measured signal.

It is, ideally, suited for extracting signal characteristic parameters to perform automatic
diagnosis of defects through intelligent techniques such as support vector machine (SVM)
and adaptive neuro fuzzy inference system (ANFIS) which will be the subject of our future
works.

REFERENCES

[1] N. Bessous, S. E. Zouzou, W. Bentrah, S. Sbaa and M. Sahraoui, Diagnosis of bearing defects
in induction motors using discrete wavelet transform, International Journal of System Assurance
Engineering and Management, vol.2018, pp.1-9, 2018.

[2] M. Vishwakarma, R. Purohit, V. Harshlata and P. Rajput, Vibration analysis & condition monitoring
for rotating machines: A review, Materials Today: Proceedings, vol.4, pp.2659-2664, 2017.

[3] M. S. Safizadeh and S. K. Latifi, Using multi-sensor data fusion for vibration fault diagnosis of rolling
element bearings by accelerometer and load cell, Information Fusion, vol.18, pp.1-8, 2014.

[4] L. T. DeCarlo, On the meaning and use of kurtosis, Psychological Methods, vol.2, p.292, 1997.
[5] M. Satyam, V. S. Rao and C. G. Devy, Cepstrum analysis: An advanced technique in vibration

analysis of defects in rotating machinery, Defence Science Journal, vol.44, pp.53-60, 1994.
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