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ABSTRACT. Traditional ARIMA (autoregressive integrated moving average) model works
with one series data set, while various cases, with multivariable series data sets, did not
fit ARIMA models. Do they have any convenient way to deal with suck kinds of is-
sues? This study provides a practical way to detect two series data sets for ARIMAX
(multivariable autoregressive integrated moving average) model building. In our concept
framework, three basic components for ARIMAX are proposed including concurrent rela-
tionships with series data, verification of cross correlation function, and fitted model for
transfer function ARIMAX. This study provides a case study to demonstrate how this
detecting process works well for selecting ARIMAX model. The result presents a useful
way to interpret the related information from the fittest ARIMAX model.

Keywords: ARIMA, ARIMAX, Cross correlation function, Time series, Transfer func-
tion

1. Introduction. ARIMA, standing for autoregressive integrated moving average, is the
most popular model for forecasting in time series domains. Previous studies have pro-
vided numerous example with this model [1-4]. ARIMA can be made to be “stationary”
by differencing (if necessary), perhaps it could be along with nonlinear transformations
such as logging or deflating (if necessary) [5]. A random variable, that is a time series,
is stationary if its statistical properties are all constant over time. Random-walk and
random-trend models, autoregressive models, and exponential smoothing models are all
special cases of ARIMA models [5,6]. The world is more complicated than we experienced.
The series data are not only random-walk and random-trend with themselves, and there
are various concurrent relationships among them. In this sense, it is also called the direct
and indirect approaches of forecasting [7]. When we deal with the multivariable series
data sets, the traditional ARIMA model cannot fit such kind of cases. Even though the
traditional approaches are different, the logic of problem solving for multivariable series
may be similar or dissimilar. Moreover, in the social science or humanity field, various
cases in time series models are contented with concurrent relationships. When should we
select ARIMA or when should we select ARIMAX (multivariable autoregressive integrat-
ed moving average)? It is a little confused when we confront such a research topic. This
is the reason why we selected this topic for further studies. In this study, we tried to
tackle the predicting issues for two series data sets with concurrent relationships. Based
on previous studies, the ARIMAX has been proposed as the research target [8]. ARIMAX
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model can take the impact of covariates on the forecasting into account, improving the
comprehensiveness and accuracy of the prediction [9]. Conducting ARIMAX for predict-
ing, it is a complicated process. Do they have practical ways to deal with such kind of
issue? To answer the question, we selected couple series data sets to practice and verify
how this process can be conducted. Based on this concern, we try to connect the related
detecting process with a reasonable way for ARIMAX model building. Our example will
focus on gross domestic products (GDP), population, and enrollment in higher educa-
tion in the case country. Given this purpose, this study tackles the following research
questions.

a) How to select series data sets for building a proposed predicting model?

b) How to detect series data sets with their concurrent relationships for ARIMAX?

¢) Which way is more practical for ARIMAX building?

In this study, we begin with the method section, which will address how the related
detecting methods can be used. Then, we will address the results with three main topics
including defining series data sets, checking cross correlation function (CCF) and building
ARIMAX model. Finally, the conclusion will be drawn and the related suggestions will
be addressed.

2. Method. This section focuses on how the fitted model can be selected following the
logical process. We displayed the theoretical framework to tackle the ARIMAX to proceed
the series data. Basically, selecting reasonable data sets is the first important step, then
checking CCF, and finally verifying the fitted model.

2.1. Logics of fitted model. The time series data for ARIMAX needed to fit the re-
quirement that both two series data sets are with concurrent relationships. Previous
studies suggested the model building at least covering 50 periods [10-12]. This require-
ment may not be necessary to be an essential in any model. It depends on the property of
series data. Moreover, we should consider the meaning of two series data sets for building
predicted model. For example, whether X is driven by Y or Y is driven by X. What
do they reflect the real situation? The assumption of series relationships needed to be
tested with CCF. When both series CCF exist, it can go through transfer function. In
the logical framework, the ARIMAX model building is based on the premises. The logical
of fittest model selection displays as Figure 1.

2.2. Definition of time series data. Selecting a meaningful time series data is a crucial
task for working valuable predictions. In this sense, we consider the data sets should fit the
basic requirement for running time series models. For example, the useful and valuable

Defining series
data sets to fit
forecasting
requirement

Selecting the
fittest ARIMAX
model and

verifying

Checking CCF
with two
series

FiGURE 1. The logical of fittest model selection
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duration of data sets is important. Season or non-season series is another factor that
should be taken into account in the model building. In this study, we selected GDP,
population and enrollment in Taiwan as the target case. The GDP and population series
data were selected from National Statistics, Taiwan [13]. The enrollment data sets were
derived from Ministry of Education [14]. All the data sets are covering 68 periods (from
1951 to 2018).

2.3. Cross correlation function. In an autocorrelation model, it is the cross correlation
of a time series while investigating the persistence between lagged times of the same time
series or signal. While the CCF is the degree of similarity between two times series in
different times or space which the lag can be considered when time is under investigation.
The difference between these two times series in different situation like distance, angle,
and direction which can be considered while the space is under investigation respectively.
To simplify, when we conducted CCF, some basic properties should be considered. As
Usoro argued, for X; and Y;, the following properties hold in CCF [15]:

a) Payn) < 1

D) pay(ny = Pu(-n)

C) Pzy(0) # 1

d) Pzy(h) = %y(h)/ v/ Yz(0)Vy(0)

Furthermore, Mardia and Goodall defined separable cross correlation function as C;; (X7,
Xo) = p(X1, X2)a,;, where A = [a;;] is a p x p positive definite matrix and p(X;, X») is a
valid correlation function [16]. Given two processes Xy, and Xo;, (X4, Xos1x) is the cross
correlation between Xj; and Xy, at lag k, while, p(Xo;, X144%) is the cross correlation
between Xy and X, at lag k [11]. In the case of X and Y, the variable X may be cross
correlated at different lags of Y, and vice versa. In this study, we proposed a way to
detect cross correlation coefficients with their figures to justify whether the CCF exists in
both non-stationary series. We can use the following rules to judge the two series which
one is dependent or independent variable.

When 14, is positive and significant, x; is possible as independent variable, while y; is
dependent variable in the model.

When 1y, is significant in lag 0 only, x, and y, are concurrent with their impacts. It
implies the x; impacts y;, while y; also impacts x;.

When 1y, is significant with positive and negative values in certain lags, we may assume
that x; impacts y;, where the impact of y; will feed back to x;.

In this case, the significant cross correlation coefficients were judged by .05 significant
level.

2.4. Building fitted ARIMAX model. We assume two time series denoted y; and x,
which are both stationary. Then, the transfer function model can be written as follows:

Yy = C + V(B)(L’t + Nt

where y; is the output series (dependent variable), z; is the input series (independent
variable), C' is constant term, V; is the disturbance, i.e., the noise series of the system
that is independent of the input series. v(B)z; is the transfer function (or impulse response
function), which allows z to influence y via a distributed lag. B is a backshift operator
and thus we can write as [17-20]

v(B)xy = (1/0 +uy B4+ 1B+ ) Xy
The ARMAX model is quite different from ARIMA model, because it works with two
different series x; and y; — output series y, is related to input series z;. Coefficients v;
are called impulse response weights, which could be positive or negative. To simplify, the

larger the absolute value of any weight v; is, the larger is the response of y; to a change
in x;_;. While the output series might not react immediately to a change in input series,
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thus some initial v weights may be equal to zero. The number of v weights equal to zero
is called dead time and is denoted as b [17].

3. Results. The result demonstrates how the CCF works with GDP, enrollment and pop-
ulation. The transfer function was conducted for the series when the CCF is significant.
The selected target series work with ARIMAX will be addressed.

3.1. Concurrent relationships verified by CCF. The finding reveals there is no sig-
nificant difference between population and GDP. Similarly, there is no significant differ-
ence between enrollment and GDP based on their slim coefficients. The different CCF's
of the series are displayed in Table 1 and Figure 2. Typically, the lags from 7 to —7
are defaulted in SPSS (statistical programs for social science). In this case, there is no
necessary conducting transfer function models.

TABLE 1. Cross correlation coefficients for population, enrollment and GDP

Lag | Population and GDP | Std. error | Enrollment and GDP | Std. error
-7 027 129 —.152 129
—6 .044 128 —.096 128
-5 .062 127 .001 127
—4 .070 126 .035 126
-3 .095 125 .000 125
-2 129 124 .084 124
-1 116 123 071 123
0 121 122 .045 122
1 .085 123 —.024 123
2 152 124 105 124
3 190 125 —.012 125
4 199 126 —.018 126
5 268 127 167 127
6 253 128 167 128
7 276 129 129 129
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FiGURE 2. Testing the significances of cross correlation coefficients with
GDP, enrollment and population (left side is population and GDP, right
side is enrollment and GDP)
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In contrast, the series between population and enrollment have shown with concurrent
relationships. Table 2 and Figure 3 demonstrate there are strong cross relationships
between the two series. The coefficients of cross correlation are significant differences
from lag 7 to lag —7. Both series data sets fit to ARIMAX model.

TABLE 2. Coefficients of cross correlation for population and enrollment

Lag 7| —-6|-5|—-4|-3|-2|-1|0 1 2 3 4 5 6 7

Cross | 1 £10.54710.606] 0.67 0.68000.6870.70800.756(0.682| 0.6 [0.637] 0.6 [0.51300.497/0.481
correlation

Std. error|0.129(0.128/0.127|0.126|0.125|0.124/0.123/0.122|0.123|0.124(0.125/0.126/0.127|0.128|0.129

i

oo

CCF

T T
7 6 -5 4 3 2 414 0 1 2 3 4 5 6 7

F1GUurE 3. Significant CCF between population and enrollment

3.2. Selected ARIMAX model building. We selected ARIMAX(2,1,1) with popu-
lation for forecasting the enrollment. Whether the ARIMAX(2,1,1) model fits? The
result reveals the smooth R? is .733. The standardized BIC is 18.896. The related esti-
mations show ARIMAX(2,1,1) with small error in RMSE, MAPE, MAE, and MaxAE.
The Ljung-Box Q (18) with df 15 is 28.033 (p = .021). It could be a fitted model. The
details have been presented in Table 3.

The parameters of ARIMAX(2,1,1) demonstrate that the enrollment with log and one
difference is significant in its AR(1) terms lag = 1 and lag = 2. Since the CCF has

TABLE 3. The statistical estimations for ARIMAX(2,1, 1) model

Estimation for fitted model | ARIMAX(2,1,1)
Smooth R? 733
R? 1.000
RMSE 9747.535
MAPE 2.164
MaxAPE 18.047
MAE 6606.628
MaxAE 27373.261
Std. BIC 18.896
Ljung-Box Q (18) with df 15 | 28.033 (p = .021)
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TABLE 4. The parameters of ARIMAX(2,1, 1) based on standardized BIC

Model Estimate| SE t D
Constant —.019 |.021| —.902 |.371
AR Lag = 1| 1.313 |.237| 5.539 |.000
Enrollment |log Lag = 2| —.591 |.181 | —3.275 |.002
Difference 1
MA Lag = 1] 267 |.288] .929 |.357
Enrollment Delay = 2

Lag = 0| 3.719 |1.538| 2.419 |.019
Numerator |Lag = 1| —2.975 [1.418] —2.099 |.040
Lag = 2| —4.130 |1.547| —2.671 |.010

Difference 1
Denominator|Lag = 1| —.952 [.050 |—19.152].000
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F1GURE 4. ACF and PACF for ARIMAX(2,1, 1) model

been fairly well-distributed in this model, the population could be as a numerator or a
denominator. The result reveals that the population as a numerator in the model will
work in lag 0, lag 1 and lag 2. Moreover, the population works well with one difference
and lag 1 as the denominator in the selected model. The details of results are presented
in Table 4.

The residual test with ACF (left) and PACF (right) is demonstrated in Figure 4. Both
of them fit the assumptions that the white noise is acceptable for the model building.

3.3. Forecasting enrollment with population. Finally, we conducted ARIMAX(2, 1,
1) model to forecast the enrollment with population in next decade. The result of fore-
casting for enrollment in next decade (2019 to 2028) is displayed in Table 5 and Figure 5.
The future trend of enrollment will decrease in the case country from 1,211,146 in 2019
t0 904,242 in 2028. The results may provide useful information for alerting related policy
makers or institutional leaders. The trend provides messages for adjusting recruitment
policy or enhancing their competitiveness in future.
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TABLE 5. Forecasts of enrollment from 2019-2028

Year | Forecasts | Lower | Upper

2019 | 1211146 | 1177377 | 1244914
2020 | 1177045 | 1125444 | 1228647
2021 | 1142945 | 1072611 | 1213278
2022 | 1108844 | 1019444 | 1198245
2023 | 1074744 | 966117 | 1183371
2024 | 1040644 | 912703 | 1168584
2025 | 1006543 | 859236 | 1153850
2026 | 972443 | 805734 | 1139151
2027 | 938342 | 752209 | 1124476
2028 | 904242 | 698666 | 1109817
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FIGURE 5. Result of predicted enrollment with ARIMAX(2,1, 1) model

TABLE 6. Compared the ARIMAX(2,1,1) and ARIMA(2,1,1) for enrollment

Models ARIMAX(2,1,1) ARIMA(2,1,1)
Compared | Discrepancy (A-P) | Residual | Discrepancy (A-P) | Residual
Total error 4,196 —0.0612 —46,139 2

Average error 68.787 —744.177

3.4. Comparison of ARIMA and ARIMAX. Table 6 displays the results of ARI-
MA(2,1,1) for enrollment and ARIMAX(2, 1, 1) for enrollment with population during the
model building periods. We found the discrepancy (A-P) between actual values (A) and
predicted values (P) in ARIMAX(2,1,1) is smaller than that of ARIMA(2,1,1). Noise
residual in ARIMAX(2,1,1) is —0.061, while in ARIMA(2,1,1) is 2.

4. Conclusions. This study provides an example of ARIMAX model building to tackle
time series data sets with their concurrent relationships. The selected ARIMAX(2,1,1)
model with population and enrollment can be used to predict enrollment in future. Con-
sidering the uncertain enrollment in higher education setting, the finding provides clear
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trend that will decrease rapidly. Since the system has faced the new crisis of declining
birthrate, the population will decrease steadily which might impact the enrollment direct-
ly. Moreover, the higher education expanding has shown a new high in the system for
couple years ago. The findings may provide useful information for related policy makers
to adjust related enrollment policy.

The ARIMAX will work well compared with that of ARIMA model in this case study.
While the logic of series data transformation is a crucial component of model building.
For further studies, this study suggests selecting fitted concurrent series data and using
ARIMAX to tackle the similar issues in other settings. We suggest creating an innovative
concept framework for related studies before your model building. The related statistical
software can help the CCF test and ARIMAX model building.
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