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ABSTRACT. Motifs in time series data are similar subsequences which appear repeatedly
several times in data set. Motif discovery is one of the general data mining techniques.
In this paper, we propose a new algorithm for identifying motifs based on a hashing tech-
nique. By experiment, we compare our algorithm with Brute-Force and MK algorithms
according to the execution time and accuracy of identifying motif.
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1. Introduction. Time series data arise in many fields, from science and technology to
economics and finance, etc. Search for similar subsequences in a time series called motifs.
This is a very necessary task in many practical applications.

Identifying motifs in time series data is used to solve problems in a variety of application
areas since 2002, such as using motifs to signature verification [1], to detect duplicate
images in the shape database [2], to forecast stock prices [7], to classify time series data
[3] and to give useful information for the user in order to model or analyze the data [4].

There are many algorithms and trends in identifying motifs in recent times [4]. The
algorithm for identifying the exact motifs (Brute-Force) is quadratic in n, the number of in-
dividual time series (or the length of the single time series from which subsequences are
extracting) [5]. To increase the time efficiency in identifying motifs, some approximation
algorithms are proposed [6-10]. These algorithms have the cost of O(n) or O(nlogn);
however, they need some predefined parameters. In the few years recently, some algo-
rithms have identified all the motifs [11] or motifs of variable lengths on very large time
series (millions of points) [7].

In this paper, we introduce an algorithm to improve the effective time in the identity
motif approximation on time series (the length of the motifs is known in advance); it
consists of two procedures named BuildHashTable and Find_Motif. The approach of the
paper is based on the random projection method introduced by Buhler and Tompa [12]
and hashing techniques, the time complexity of the method in [12] is quadratic [4], but
the time complexity of our approach is better (see Section 4).

The original data was normalized then reduced the number of dimensions and discrete
into the form of sequences. Use a sliding window of size w (user-defined w) to slide
through all the characters in the sequence [13]. The subsequences generated from the
sliding window are call words [14], each word being considered as a feature. A hash
table used to hold these features, and the two match features store in the same bucket.
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Looking for the largest size bucket, the components of this bucket will be motif candidates.
With a given threshold (from the user), use the Euclidean distance function to select
approximate motifs from candidate motifs.

The rest of the paper is organized as follows. In Section 2, we give some essential
background knowledge for identifying motifs on time series. Section 3 introduces our
hashing technique algorithm. Section 4 reports on the experiments of the hashing tech-
nique method in comparison to the Brute-Force algorithm and the MK algorithm [5].
Section 5 gives some conclusions and future work.

2. Background. In this section, we provide much background knowledge as well as some
related works to identify the motifs on the time series data.

2.1. Definitions.

Definition 2.1. Time Series: A time series T = ty,...,t,, is an ordered set of n real-
valued variables (Elements in the set can be repeated).

Definition 2.2. Subsequence: Given a time series T of length m, a subsequence C' of T
is a sampling of length n < m of contiguous position from T, that is, C' =t,,.. ., tpin_1
forir<p<m-—-n+1.

Definition 2.3. Trivial Match: Given a time series T, containing a subsequence C' be-
ginning at position p and a matching subsequence M beginning at q, we say that M is a
trivial match to C' if either p = q or there does not exist a subsequence M' beginning at ¢’
such that D(C, M') > R, and either ¢ < ¢ <p orp <q <q.
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F1GURE 1. For almost any subsequence C' in a time series, the best matches
are the trivial subsequences immediately to the left and right of C' [14].

2.2. Effectively identify motif. Based on the experimental results, some researchers
have proposed a method for determining the effectiveness of a motif search algorithm.
This option is based on how the value of the efficiency coefficient decides (the smaller the
coefficient, the higher the efficiency of the algorithm), as follows [14]:

_ Number of Time calls Euclidean dist
Efficiency =

Number of Times Brute-Force calls Fuclidean dist

2.3. Similar distance measurement [14,16].
Euclidean distance: The distance of two subsequences @ and C'is defined as (d1).

D (Q7 C) - \/Z?:I(QZ - Ci)2 (d1)7
DR(Q.0) = /Z\/SL, (@ — ) (42),
MINDIST (Q,C) = \/Z VI (dist 3.@)° (d3)
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When @ and C transform into PAA representations as @ and C, the distance between
Q@ and C will be (d2). @ and C continue to transform into the symbolic (words) represen-
tation of @ and C, then MINDIST function (d3) returns the minimum distance between
@ and C.

Dynamic Time Warping Distance (DTW): Berndt and Clifford [15] introduce
DTW, a point from this sequence can map into many points in the other sequence.
Figure 2 illustrates this; D'TW gives more accurate results but time costs are higher than
Euclidean.

i {18 /,.-'” /

Euclidean DTW

)

FiGure 2. Using DTW, the number of times to calculate the distance
between them is higher than that using the Euclidean distance [16].

2.4. Time series data representation. The size of the time series data is often very
large. Therefore, it needs to transform into shorter and simpler data. The dimensional
reduction is the representation of the n-dimensional time series data X = (x1,...,2,)
into the fundamental k-dimensional lines Y = (y1,...,yx), Y is the baseline and k is a
coefficient of the baseline. From the basic Y, the data can completely restore the initial
X data.

The Piecewise Aggregate Approximation method (PAA) is proposed by E. Keogh et al.
[17]. This method approximates k points of contiguous values into the same mean value
of k points. The process does from left to right and the result is a line ladder.

The most commonly used discretization method is Symbolic Aggregate Approximation
(SAX) that converts time series data into strings of characters. This method was pro-
posed by J. Lin et al. [18]. The original data was discretized by the PAA method, each
fragment in the PAA subsequence mapped to a corresponding letter based on a Gaussian
distribution.

2.5. Motif identification algorithm. The motif search in time series data has two
main approaches: exact motifs and approximate motifs. Exact motifs take a lot of time
to calculate the distance between subsequences but give exact results. Approximate motifs
often use methods like PAA to reduce the data size so the number of times needed to
calculate the distance between the two subsequences is greatly reduced but their results
deviate from the correct results.

Identifying motifs of all lengths can be done by repeatedly running the algorithm to
find the motif of a given length. The method in [11] is an order of magnitude faster than
running MK [5] for every length. Therefore, it is necessary to improve the execution time
of the identity motifs algorithm with a given length. [7] is to find all motifs whose length
is greater than [ (I given) by a greedy algorithm. The highlight of this method is the
execution time of only a few seconds on the time series with millions of points. However,
greedy algorithms may not lead to optimal solutions.

3. Motif Identifying by Hashing Technique Algorithm. We present the content of
identifying motifs by hashing techniques. Figure 3 shows the steps in identifying motifs
and the procedure that builds the hash tables from data strings described as in Figure 4.

After doing Steps 1, 2, 3 and 4, a user-defined sliding window w extracts all subse-
quences, termed features. These features are inserted into a hash table. Two matching
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Step 1: Normalize initial data by zero-mean method

Step 2: Determine the length of the subsequence and cut the string
Step 3: Dimensional reduction by PAA method

Step 4: Discretization by SAX method

Step 5: Identify motifs by hashing technique

Step 6: Post-test

FIGURE 3. Steps to identify motif by hash technique

W~ U > wWwN -

o
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Algorithm BuildHashTable

/*T: discreted series data, w: the sliding window size, HashTable: storage features*/
Input: T, w

Output: HashTable

for each feature in T //Travel through each of the features in T found = false;
for each key in HashTable //Looks in all the hash keys of hashing table
if ( Match(feature, key))//Find the key that matches the feature
found = true; trivial = false; //Confirmed found
for each index in HashTable[key] .bucket
if (|index -feature.index|<w) //Examination is trivial match
trivial = true;//The trivial match case break;
if (trivial == false)//The non-trivial match case
// Add the feature to the corresponding hashing bucket of the key
HashTable [key] .bucket.Add (feature.index) ;
if (found = false)
/*If no key matches the feature,create a new hashing table containing that feature*/
HashTable[key] .bucket.Add(feature.index) ;

FiGURE 4. The algorithm builds the hash table.

1: aac >|l I
2: acb
3: cba 1
4: bac >|2_| >|5 {—>|8 I
S: acc
6: cca >3 |
7: cac
8: acb This is the largest
9: cbe |—>|7 I bucket so its features
are chosen as
The Hashing table has 9 The trivial match, does not candidate motifs.
features (or words) add 9 to a bucket.

FIGURE 5. An example that extracts candidate motifs from a hash table
(T' = aacbaccacbe, w = 3)

Algorithm Find Motif

/* T: discreted series data, Thresholdy.,, w: maximum distance threshold and sliding window size defined
by the user, Hashtable: the hash table contains features, instances: set of motifs found */
Input: 7, w, Thresholdy..

Output: L1, L2: the positions of a motif

0 Bsf = =,
1 for each feature in T isiok = true;
2 for each instance in instances
3 if (isTrivial (feature, instances) or MINDIST (feature,instances)) > Thresholdy..
4 is ok = false; // feature is trivial match or has a greater distance than Thresholdu..
5 break;
6 if(isiok = true)// The feature is a motif
motif instances.Add(feature);//add feature into instances
7 for each feature in T
8 for each instance in motif instances
9 d = MINDIST (feature, instance);
10 if (isNonTrivial (feature, instance) and d <= Bsf) Bsf = d; Ll = LOCreatures L2 = LOCinstances

F1GURE 6. The algorithm for extracting motif candidates
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features will place in the same bucket (see Figure 5). The procedure that identifies the
motif candidate from hash tables is described as in Figure 6.

Consider the Find_Motif algorithm, and the example in Figure 5. In Figure 5, select
the largest bucket: acb — acc — acb (*) with the BuildHashTable algorithm (Two for
loops in line 2 and line 5 in BuildHashTable algorithm will find the entire candidate motif
in 7" and put in the bucket. Therefore, candidate motifs are placed in the largest bucket).
In the Find_Motif algorithm: lines 2 to 6 calculate the distance of candidate motifs in (*)
with features with indexes from 1 to 9 in Hashtable (Use Table 4 of [14] to calculate the
distance). If any feature matches candidate motif, add the motif_intances set. Lines 7 to
10 find the position of the motifs in the motif_instances set on the original time series, L1
and L2 are the beginning and end positions of the motif in the time series. In this process,
we will use distance functions (d2) and (d3) as in Section 2.3 (for detailed calculation of
distance see Section 3.3 of [14]).

4. Experimental Evaluation. We implemented the motif identification algorithms:
Brute-Force, MK and our Hashing algorithm with Microsoft Visual C # along with the
Intel graphics library ZedGraph on an Intel® Core TM i2 CPU T5870, 2 GHz, RAM 4
GB, Window 7. We tested on three datasets: Stock (800, 4000, 8000, 15000 and 30000
data points), Wind (200, 4000, 8000, 12000 and 16000 data points) and Federal-Fund
(1500, 2000, 4000, 8000, 15000 data points). These datasets are obtained from UCR
Time Series Data Mining Archive Series.

4.1. Experiment on Stock data. The shapes of a motif pair on the three algorithms
are shown in Figure 7. The positions of a consecutive pair of motifs identified on the
time series are shown in Table 1. In Table 1: best-so-far (bsf) is the nearest distance of
a consecutive pair of motifs [12], Loc! and Loc2 are the starting positions of a contiguous
pair of motifs on the time series, Locl,,, and Loc2,,, are the average deviations of the
motif positions between Hashing and Brute-Force (Locl .., and Loc2,,, are calculated
based on Table 1). Loclgy, = (7T+ 1+ 9+ 27+ 2)/5/256 = 100 = 3.5%, Loc2,,, =
(7T+2+9+428+2)/5/256 x 100 = 3.7%. Table 2 shows the execution times of three
algorithms on Stock data.

= ‘r‘_)~—-\-—hvh_/-,,f"—__.mfu_‘ - ?J'—W\-""A..‘_'
e g T T -_f"_/,.,ﬂ N e
ry
i kil
-_}f”vﬂ“"‘wﬁ T’M _/_'_—\’J‘.J'r"—'-‘-..-—’.l"' ’H,:jﬁ

FIGURE 7. The shape of the identified motifs (bold) on the time series has
8000 points.

TABLE 1. Positions of a pair of motifs and their deviation on Stock data

Position of a pair of motifs Deviation of motifs
Brute-Force . Hashing Hashing
(BF) MK Hashing _BF MK

Loc1 | Loc2 | bsf | Loc1 | Loc2 | bsf | Loc1 | Loc2 | bsf | Loc1 | Loc2 | Loc1 | Loc2
321 | 772 [6.03| 321 | 772 [6.03| 314 | 765 [4.39| 7 7 7 7
298 | 1682 [3.24| 298 | 1682 |3.24| 297 | 1680 [2.19| 1 2 1 2
208 | 1682 |3.24| 298 | 1682 |3.24| 289 | 1673 |2.23| 9 9 9 9
5233 |14203|2.67| 5233 [14203|2.67| 5260 |14231|2.36| 27 28 27 28
18792129712(1.05|18792|29712|1.05|18794|29714|0.02| 2 2 2 2
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TABLE 2. The efficiency ratios of Hashing/MK on Stock data

Execution time (second) Efficiency
BF | MK |Hashing Hfs}’;li/ng HI;/iI}fl{I o BF|MK Hashing Hj‘ﬂ‘gg
043 021 | 0.20 2.11 1.04 | 1 [0.18] 0.005 | 3381
72| 137 | 3.89 1.85 0.35 | 1]0.04| 0.002 | 21.52
28.16| 5.91 | 17.32 1.63 0.34 | 1]0.05 0.001 | 33.01
135 [ 18.53 | 80 1.69 023 | 1(0.04| 0.0004 | 101.98
158 [27.684| 97.13 1.63 029 | 1/0.08 0.004 | 19.43

From the experimental results on Stock data, we can see that:

- The positions of a pair of motifs have average deviations are Loc1,,, = 3.5% and
Loc24,g = 3.7% when compared to Brute-Force and these deviations increase as the

number of dimensions decreases.

- The execution time of the Hashing is slower than the MK but the position deviation

of the motif is almost the same as MK.

- Changing parameters with PAA = 64 and PAA = 32, we also obtained similar results.

4.2. Experiment on Wind data. The experimental results obtained from the exper-
iment on the Wind data are shown in Table 3. The average deviations of the motif
positions between Hashing and Brute-Force are Loc1 4., = 114% and Loc2,,, = 34%. The
shape of the pair of consecutive motifs and execution time on Wind data of the three

algorithms are shown in Figure 8.

TABLE 3. The starting positions of a pair of motifs on Wind data

Position of a pair of motifs Deviation of motifs
. Hashing | Hashing
BF MK Hashing _BF ~ MK

Loc1|Loc2|bsf |Locl|Loc2 | bsf|Locl|Loc2|bsf|Locl|Loc2|Locl|Loc2
1154 | 1446 |6.31| 1154 | 1446 [6.31| 1228 | 1515 |4.86| 74 | 69 74 | 69
1154 | 1446 |6.31] 1154 | 1446 |6.31| 1228 | 1515 |4.68| 74 | 69 74 ] 69
4998 | 5960 [5.99| 4998 | 5960 [5.99| 3725 | 6225 |4.63| 1273 | 265 | 1273 | 265
11672| 9016 [5.39/11672| 9016 5.39|11652| 8997 |4.09| 20 19 20 19
9016 |11672(5.39| 9016 [11672(5.39| 8997 |11652]4.09| 19 20 19 20

From the experimental results on Wind data, we can see that:

- The execution time of Hashing algorithm is better than the MK algorithm, while

the position deviation of the motif varies quite low.

- In the case of the motif of the Hashing algorithm, there is more deviation (time series
with 8000 points), when a time series has many extremes (Figure 8(a)).
algorithm using PAA method, in addition to advantages, the PAA also has some
disadvantages; it minimizes dimensionality by the mean values of equal-sized frames.
This mean value may cause a possibility to miss some important points in the time
series [19]. Furthermore, using Euclidean measurements, in this case, can cause the

accuracy of poor motifs.

- Changing parameters with PAA = 64, subsequence length = 256 and PAA = 128,

subsequence length = 512, we also obtained similar results.

Hashing
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4.3. Experiment on Federal-Fund data. Experiments on the Federal-Fund are like
Stock data and Wind data, time series with subsequence length = 512 and PAA are 32,
64 and 128 respectively. We also obtained similar results. The execution time of Hashing
algorithm is better than MK algorithm and the deviation of position of motif compared
with Brute-Force algorithm is relatively low: Locl,,, = 6.32%, Loc24,, = 5.7%, (PAA =
32); Locl gy = 9.58%, Loc24,, = 9.3%, (PAA = 64); Locly, = 9.41%, Loc2q,, = 9.17%,

(PAA = 128).

Through our empirical results on three datasets, we have the following observations.

- The length of the subsequences varies but with the same rate of reducing the dimen-
sion; the Hashing algorithm gives better execution time and efficiency than the MK
algorithm.

- The thicker dataset, the Hashing algorithm gives the motifs closer to being correct.

- Hashing algorithm produces poor results when the dataset has many extreme points.

- Hashing algorithm runtime is better than MK algorithm because it uses hashing tech-
nique to group features in bottom-up. However, the motif place is only approximate
when compared to Brute-Force algorithm.

- Deviation to the motif’s place is relatively small and the shape of the motifs is almost
identical to the Brute-Force and MK algorithms.

5. Conclusions. We use the hash technique to improve the execution time in identifying
motif. Through the Hashing algorithm on three datasets, the execution time has an
encouraging improvement. The Hashing algorithm also has some limitations; for example,
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the results of motifs found are affected when the time series has many extremes; the
length of the motif must be known in advance and the size of the time series is small. In
the last few years there were some works finding approximate motif with variable length
[7], finding all motifs of different lengths [11]. Current data is increasing very fast, so we
need to experiment on a large time series, which also stimulates us to find appropriate
algorithms that increase the accuracy of motif and shorten run time. For future work, we
continue to research to solve the limits that we are facing.
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