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Abstract. This paper is devoted to obtaining the novel robust controller design pro-
cedure for uncertain polytopic linear continuous time systems. The proposed method is
based on the Bellman-Lyapunov equation for the suboptimal structure case. The obtained
robust controller with output/state feedback ensures in the frame of H2 guaranteed cost
and parameter dependent quadratic stability. The performance and quality are given
as augmented quadratic cost function known as QSR (states, states derivatives and in-
put). Novel approach ensures that designed PID controller gains belong to the obtained
interval. The proportional and integral controller gains may change simultaneously or
independently. The obtained controller gains intervals should be used by the controller
designer, e.g., to increase the control quality, and ensure the plant input/output con-
straints. The robust stability of the closed loop system and performance does not violate
when the gains change within the obtained intervals and the rates of the controller gains
changes are not over the given value. In the example we ensure that maximal value of
controller parameters rates is given as max(θ̇) = 0.5/sec. The above possibilities open
the new way to increase design quality and performance. Numerical example is given to
illustrate the properties and effectiveness of the proposed method.
Keywords: Robust controller, Linear continuous time system, Parameter-dependent
Lyapunov function, Bellman-Lyapunov equation

1. Introduction. Robust control is frequently encountered in various physical, industrial
and engineering real life systems as plant robust controller, robust controller of hybrid
systems, robust predictive controller, robust gain scheduled controller, etc. The applica-
tion survey of robust controller theory may reader consult in [1, 2]. Since robust control
increases the stability and performance of the closed loop system, it has received much
attention during the past decades. Numbers of authors dedicate their work to robust
controller design, e.g., [3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16]. In this paper we
pursue the idea in [3, 17] which introduces new auxiliary matrices to the robust controller
design procedure, which may decrease the conservativeness of controller design [18, 19].
The aim of the present work is twofold. Firstly novel robust stability conditions with
less conservativeness in the frame of H2 will be derived. Secondly, the robust controller
designer will obtain more information about the controller parameters, specifically one
obtaining the controller parameters intervals within the parameters may change without
violation of the closed loop system robust stability and performance. The designer may
use above properties within the dynamic process to change the controller parameters for
making the better performance of the closed loop system.

The notations applied in the paper are standard in the field of robust controller design.
Our notations are standard. P ∈ Rm×n denotes the set of real m × n matrices, Im is an
m × m identity matrix, P > 0 (P ≥ 0) is real symmetric, positive definite (semidefinite)
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matrix. Matrices, if not explicitly stated, are assumed to have compatible dimensions.
This paper is organized as follows. Section 2 gives preliminaries and problem formulation.
Section 3 gives our main results in the form of Bilinear Matrix Inequalities (BMI) and
convex robust stability conditions with respect to uncertainties. Section 4 shows the
example and Section 5 gives conclusion.

2. Problem Statement and Preliminaries. We consider the following linear uncertain
continuous time systems

ẋ = A(ξ)x + B(ξ)u, y = Cx (1)

where x ∈ Rn is the plant state, u ∈ Rm is control input, and y ∈ Rl is the plant controlled
output; matrices A(ξ), B(ξ) belong to the convex set of a polytope with “N” vertices

Ω :=

{
A(ξ) ∈ Rn×n, B(ξ) ∈ Rn×m : A(ξ), B(ξ) =

N∑
i=1

(Ai, Bi)ξi,

N∑
i=1

ξi = 1, ξ ≥ 0, ξ̇i ∈
⟨
ξ̇i, ξ̇i

⟩}
(2)

Ai, Bi, C are constant matrices of corresponding dimensions; ξi, i = 1, 2, . . . , N are
constant or time varying but unknown parameters. It is supposed that system matrices
(A(ξ), B(ξ), C) allow design of the PID controller. For more details see [10]. To assess
performance quality in the frame of H2 an augmented quadratic cost function is proposed:

Jc =

∫ ∞

0

J (x, ẋ, u) dt (3)

where
J (x, ẋ, u) = xT Qx + ẋT Sẋ + uT Ru

where Q,S ∈ Rn×n are positive definite (semidefinite) matrices, and R ∈ Rm×m is positive
definite matrix. Equality (3) should be rewritten as follows

J(.) =
[

ẋT xT uT
]  S 0 0

0 Q 0
0 0 R

 ẋ
x
u

 (4)

In this paper the design of robust PID controller with static output feedback problem is
studied.

Problem 2.1. Design a robust PID controller with static output feedback and control
algorithm:

1.

u = Kp(θ)Cpx + Ki(θ)Cix + KdCdẋ (5)

2.

u = Kp(θ)Cpx + Ki(ϑ)Cix + KdCdẋ (6)

where Kp(θ), Ki(ϑ), Kd are proportional, integral and derivative gain matrix of the PID
controller with corresponding dimensions.

Kj(θ) = Kj0 + Kj1θ, j = p, i

Ki(ϑ) = Ki0 + Ki1ϑ (7)

We assume that both lower and upper bounds of auxiliary parameters θ, ϑ and their rates
are known. Specifically:

θ ∈
⟨
θ, θ
⟩
, ϑ ∈

⟨
ϑ, ϑ

⟩
(8)

θ̇ ∈
⟨
θ̇, θ̇
⟩

, ϑ̇ ∈
⟨
ϑ̇, ϑ̇

⟩
(9)
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The aim of introducing θ, ϑ is that during the controller design procedure are obtained
matrices Kji, j = p, i and in this way the designer obtains the intervals where the controller
parameters may change. In the above controller parameter intervals robust stability and
performance are guaranteed. Other function of θ, ϑ and obtained intervals may be used
to increase damping of the closed loop system. The controller parameters should change
with the function of any plant or exogenous variables. To guarantee the robust stability
and performance in the frame of H2 the Bellman-Lyapunov equation will be used [20].

Theorem 2.1. Consider the uncertain system (1). Control Algorithm (5) or (6) is the
guaranteed cost control law for the closed loop system if and only if there exists Lyapunov
function V (x, θ, ξ) such that the following condition holds:

Be(x, u, ξ, θ) =
dV (.)

dt
+ J(x, ẋ, u) = −εxT x, ε ≥ 0, ε → 0 (10)

Equation (10) is known as Bellman-Lyapunov equation. Function V(.) which satisfies
(10) is the Lyapunov function. Note that for concrete structure of the Lyapunov function
the obtained design procedure may reduce from “if and only if” to “if”.

3. Robust Controller Design.

Case 3.1. Controller parameters Kp(θ), Ki(θ) change simultaneously.
In this case we assume that P and I part controller parameters change together with θ.
Assume, Lyapunov function in (10) is given in the following particular structure:

V (x, θ, ξ) = xT P (θ, ξ)x = xT (P0(ξ) + P1(ξ)θ)x (11)

and

Pj(ξ) =
N∑

i=1

Pjiξi, j = 0, 1; i = 1, 2, . . . , N

Time derivative of Lyapunov function (11):

dV (.)

dt
=
[

ẋT xT uT
]  0 P (θ, ξ) 0

P (θ, ξ) P
(
θ̇, ξ̇
)

0

0 0 0


 ẋ

x
u

 (12)

where

P
(
θ̇, ξ̇
)

=
N∑

i=1

(
N∑

k=1

P0kξ̇k +
N∑

k=1

P1kξ̇kθ +
N∑

k=1

P1kθ̇

)
ξi

We introduce six auxiliary matrices with dimensions N1, N2 ∈ Rn×n; N3 ∈ Rn×m, N4, N5 ∈
Rm×n; N6 ∈ Rm×m to separate system matrices from Lyapunov function:

•
2 (N1ẋ + N2x + N3u)T (ẋ − A(ξ)x − B(ξ)u) = 0

•
2 (N4ẋ + N5x + N6u)T (−KdCdẋ − (Kp(θ)Cp + Ki(θ)Ci) x + u) = 0 (13)

Denote Kc(θ) = Kp(θ)Cp + Ki(θ)Ci. Summarizing performance (4), time derivative of
Lyapunov function (12), and (13) one obtains Bellman-Lyapunov equation in the form:

Be(.) = vT Wv ≤ 0; vT =
[

ẋT xT uT
]

(14)

W = {wij(ξ)}3×3

and

w11(ξ) = S − N4KdCd − CT
d KT

d N4 + NT
1 + N1

w12(ξ) = P (θ, ξ) − NT
4 Kc(θ) − CT

d KT
d N5 − NT

1 A(ξ) + N2
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w13(ξ) = NT
4 − CT

d KT
d N6 − NT

1 B(ξ) + N3

w22(ξ) = − NT
2 A(ξ) − A(ξ)T N2 − NT

5 Kc(θ) − Kc(θ)
T N5 + Q + P

(
θ̇, ξ̇
)

w23(ξ) = NT
5 − Kc(θ)N6 − NT

2 B(ξ) − A(ξ)T N3

w33(ξ) = R − NT
3 B(ξ) − B(ξ)T N3 + NT

6 + N6

Due to that matrix W is convex with respect to θ and ξ one can split matrix W as follows:
W =

∑N
i=1 Wiξi ≤ 0 and

Wi = W0i + W1iθ ≤ 0; i = 1, 2, . . . , N (15)

where W0i = {w0kl(i)}3×3; W1i = {w1kl(i)}3×3, i = 1, 2, . . . , N

w011(i) = S − NT
4 KdCd − CT

d KT
d N4 + NT

1 + N1

w111(i) = 0

w012(i) = P0i − NT
4 K0c − CT

d KT
d N5 − NT

1 Ai + N2

w112(i) = P1i − NT
4 K1c

w013(i) = NT
4 − CT

d KT
d N6 − NT

1 Bi + N3

w113(i) = 0

w022(i) = − NT
2 Ai − AT

i N2 − NT
5 Kc0 − KT

c0N5 + Q + P
(
θ̇, ξ̇
)

0

w122(i) = − NT
5 Kc1 − KT

c1N5 + P
(
θ̇, ξ̇
)

1

w023(i) = NT
5 − KT

c0N6 − NT
2 Bi − AT

i N3

w123(i) = − KT
c1N6

w033(i) = R − NT
3 Bi − BT

i N3 + NT
6 + N6

w133(i) = 0

Obtained results are summarized in the following theorem.

Theorem 3.1. Uncertain system (1) with controller (5) is robust parameter dependent
quadratically stable with guaranteed cost when controller parameters lie in the following
interval:

Kp ∈
⟨
Kp0 + Kp1θ, Kp0 + Kp1θ

⟩
Ki ∈

⟨
Ki0 + Ki1θ,Ki0 + Ki1θ

⟩
and rates of θ̇, ξ̇ are given by (2) and (9) if there exists a positive definite matrix P (θ, ξ) >
0 matrices Nk, k = 1, 2, . . . , 6, positive definite (semidefinite) matrices Q, S and positive
definite matrix R such that inequality (15) hold.

Note that (15) holds if it holds for all i = 1, 2, . . . , N vertices and for θ, θ.

Case 3.2. Controller parameters Kp(θ), Ki(ϑ) change independently.
In this case we assume that controller parameters change independently from each other.
Using the same approach as in the first case only instead of Equation (13) we have sub-
stituted:

vT

 2NT
4

2NT
5

2NT
6

 [ −KdCd −Kc(θ, ϑ) Im

]
v = 0 (16)

where

Kc(θ, ϑ) = Kp0Cp + Ki0Ci + Kp1Cpθ + Ki1Ciϑ (17)
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Summarizing (4), (12), (13) and (16) one obtains the Bellman-Lyapunov function for the
second case (17) in the form

Be2 = vT Ve(ξ, θ, ϑ)v ≤ 0 (18)

Due to that (18) is convex with respect to ξ, θ, ϑ one can rewrite (18) as follows:

Ve(ξ, θ, ϑ) =
N∑

i=1

Viξi (19)

and
Vi = V0i + V1iθ + V2iϑ ≤ 0, i = 1, 2, . . . , N (20)

V0i = {v0kl(i)}3×3

V1i = {v1kl(i)}3×3

V2i = {v2kl(i)}3×3

v011(i) = S + NT
1 N1 − NT

4 KdCd − CT
d KT

d N4

v111(i) = 0, v211(i) = 0 ∈ Rn×n

v012(i) = P0i − NT
4 (Kp0Cp + Ki0Ci) − CT

d KT
d N5 − NT

1 Ai + N2

v112(i) = P1i − NT
4 Kp1Cp, v212(i) = P2i − NT

4 Ki2Ci

v013(i) = N3 + NT
4 − CT

d KT
d N6 − NT

1 Bi

v113(i) = 0

v213(i) = 0 ∈ Rn×m

v022(i) = − NT
5 (Kp0Cp + Ki0Ci) − (Kp0Cp + Ki0Ci)

T N5

− NT
2 Ai − AT

i N2 + Q + M0i

v122(i) = − NT
5 Kp1CpN5 + M1i

v222(i) = − NT
5 K1iCi − CT

i KT
i1N5 + M21

v023(i) = NT
5 − (Kp0Cp + Ki0Ci)

T N6 − NT
2 Bi − AT

i N3

v123(i) = − CT
p KT

p1N6, v223(i) = −CT
i KT

i1N6

v033(i) = − NT
3 Bi − BT

i N3 + R + NT
6 + N6

v133(i) = 0

v233(i) = 0 ∈ Rm×m

For the second case Lyapunov matrix (11) is as follows:

P (ξ, θ, ϑ) = P0(ξ) + P1(ξ)θ + P2(ξ)ϑ

Pj(ξ) =
N∑

i=1

Pjiξ, j = 0, 1, 2

P
(
ξ̇, θ̇, ϑ̇

)
=

N∑
i=1

(M0i + M1iθ + M2iϑ) ξi

M0i =
N∑

l=1

P0lξ̇l + P1iθ̇ + P2iϑ̇

M1i =
N∑

l=1

P1lξ̇l, M2i =
N∑

l=1

P2lξ̇l
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For the second case the obtained results are summarized in the following theorem.

Theorem 3.2. Uncertain system (1) with controller (6), (17) is robust parameter depen-
dent quadratically stable with guaranteed cost for all controller parameters

Kp ∈
⟨
Kp0 + Kp1θ, Kp0 + Kp1θ

⟩
Ki ∈

⟨
Ki0 + Ki1ϑ, Ki0 + Ki1ϑ

⟩
and rate of θ̇, ϑ̇ (9) if there exists a positive definite matrix P (ξ, θ, ϑ) > 0 matrices Nk,
k = 1, 2, . . . , 6, positive definite (semidefinite) matrices S, Q and definite matrix R such
that inequality (20) holds for all i = 1, 2, . . . , N and corners of θ, ϑ and their rates.

4. Example. Consider the following augmented (I-part of the controller) uncertain sys-
tem:

A1 =

 −0.23 0.25 0
0.1 −0.5 0
0 1 0

 B1 =

 0
1
0


A2 =

 −0.1 0.2 0
0.09 −0.55 0
0 1 0

 B2 =

 0
0.9
0


Cp = Cd =

[
0 1 0
0 0 0

]
Ci =

[
0 0 0
0 0 1

]
Under the following parameters: performance Q = q ∗ I, q = 0.001, S = s ∗ I, s = 0,
R = r ∗ Ir, r = 1, rate of change max θ̇ = max ϑ̇ = 0.5/sec, max ξ̇ = 0.01/sec and PID
controller

R(s) = Kp +
Ki

s
+ Kds

for the two cases the following results are obtained
θ, ϑ ∈ ⟨−0.1, 1⟩

1.

Kp ∈ ⟨−0.7841,−1.5683⟩,
Ki ∈ ⟨−0.7,−1.9235⟩,
Kd = −0.0962

2.

Kp ∈ ⟨−0.922,−1.1518⟩,
Ki ∈ ⟨−0.8777,−1.0425⟩,
Kd = −0.0753

max θ̇ = max ϑ̇ = 0:

1.

Kp ∈ ⟨−0.9014,−1.1319⟩,
Ki ∈ ⟨−0.6739,−0.8999⟩,
Kd = −0.1363

2.

Kp ∈ ⟨−0.4674,−1.8402⟩,
Ki ∈ ⟨−0.4854,−1.62154⟩,
Kd = −0.0524

θ = ϑ = −1, θ = ϑ = 1
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1.

Kp ∈ ⟨−0.6532,−0.7462⟩,
Ki ∈ ⟨−0.6887,−0.7929⟩,
Kd = −0.0514

2.

Kp ∈ ⟨−0.9468,−1.0138⟩,
Ki ∈ ⟨−0.7862,−0.879⟩,
Kd = −0.1345

θ = ϑ = 0, θ = ϑ = 1

1.

Kp ∈ ⟨−0.6301532,−2.697⟩,
Ki ∈ ⟨−0.6079,−1.0394⟩,
Kd = −0.1056

2.

Kp ∈ ⟨−1.277,−1.5817⟩,
Ki ∈ ⟨−0.8314,−0.946⟩,
Kd = −0.234

θ = ϑ = −1, θ = ϑ = 0

1.

Kp ∈ ⟨−0.7203,−1.4865⟩,
Ki ∈ ⟨−0.7024,−0.9447⟩,
Kd = −0.0777

2.

Kp ∈ ⟨−0.9702,−1.167⟩,
Ki ∈ ⟨−0.8707,−0.9583⟩,
Kd = −0.1073

Note that within the obtained controller parameters changes, the controller parameters
may change with rate of max θ̇ = max ϑ̇ = 0.5/sec without violation of closed loop robust

stability. Plant parameters may change with rate of max ξ̇ = 0.01/sec. The designer could
use the above new possibilities to increase the performance of the closed loop system. One
can observe that in the case of simultaneously controller parameters changes (case 1.) the
obtained interval is larger than independent controller parameters changes.

5. Conclusion. This paper is devoted to developing a novel robust controller design
procedure for polytopic uncertain continuous-time systems in the frame of H2 – guar-
anteed cost and parameter dependent quadratic stability. In this paper the obtained
design procedure allows design of robust static output/state feedback with PID structure.
In addition, the design procedure is convex regarding to the auxiliary parameters (θ, ϑ)
which may decrease the conservativeness of the controller design procedure. The obtained
controller parameters (Kp, Ki) and their possible interval changes do not violate the ro-
bust stability condition and performance of closed loop system. There are two design
approaches: controller parameters changes as a function of auxiliary parameter θ or con-
troller parameters changes independently of each other. Controller designer should use
obtained results for increasing the quality of closed-loop dynamic process via changing
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(which direction is a future research) the controller parameters in the obtained interval
without violating the stability and obtained quality of closed-loop systems. The obtained
design results of their properties and effectiveness are illustrated on the simple example
with five different auxiliary parameter values from which the robust controller designer
should choose one of them.
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