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Abstract. A modified evolved fuzzy method for the control of dynamic systems in vari-
ous states is considered in this paper. For this purpose, a two-level strategy is proposed to
first decompose the large-scale system into several interconnected subsystems. Then mod-
ified fuzzy control inputs are obtained in the form of states and interaction feedback. The
relaxed delay-dependent stability criterion obtained from the energy function and linear
matrix inequality (LMI) based optimum is proposed and used to coordinate the solutions
and guarantee the asymptotic stability of the overall system.
Keywords: Intelligent information, System control, Artificial intelligence

1. Introduction. Time delay is commonly encountered in various engineering systems.
For example, systems with computer control have time delays, as it takes time for the
computer to execute numerical operations. The introduction of the time-delay factor
is often a source of instability and generally complicates the analysis. Fuzzy-rule-based
modeling has become an active research field because of its unique merits in solving
complex nonlinear systems. Therefore, in this study we consider a multiple time-delay
system based on the so-called Takagi-Sugeno fuzzy model. One critical property of control
systems is stability and considerable reports have appeared in the literature on how to
handle the stability problem for fuzzy dynamic systems (see, for example, [1-6] and the
references therein). Hence, a stability criterion for multiple time-delay fuzzy large-scale
systems is quite important and has garnered much attention. The rest of this study is
organized as follows. First, the system description is given. Next, based on Lyapunov
approach, a stability condition is derived to guarantee the asymptotic stability of multiple
time-delay fuzzy large-scale systems. Finally, an example is given to demonstrate the
result, followed by some conclusions.
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2. Problem Statement and Preliminaries. Consider a time-delay system F de-
scribed by the following equations:

ẋj(t) =

rj∑
i=1

hij(t)

Aijxj(t) +

Nj∑
k=1

Aikjxj(t− τkj)

+
J∑

n=1
n ̸=j

Cnjxn(t), (1)

where Aij is a constant matrix with appropriate dimensions, xj(t) is the state vector, and
Cnj is the interconnection with the j interconnected plants. Equation (1) is represented
by a Takagi-Sugeno fuzzy model of the following form:

IF x1j(t) is Mi1j · · · and xgj(t) is Migj; THEN ẋj(t) = Aijxj(t)+

Nj∑
k=1

Aikjxj(t−τkj), (2)

where xT
j (t) = [x1j(t), x2j(t), . . . , xgj(t)], Mipj (p = 1, 2, . . . , g) are the fuzzy sets and

x1j(t) ∼ xgj(t) are the premise variables. The final output of the Takagi-Sugeno fuzzy
model is inferred as follows:

ẋj(t) =

rj∑
i=1

hij(t)

Aijxj(t) +

Nj∑
k=1

Aikjxj(t− τkj)

 . (3)

Theorem 2.1. The multiple time-delay fuzzy large-scale system is asymptotically stable,
if there exist positive constants αj and β, j = 1, 2, . . . , J are chosen to satisfy

λm(Qij) +Hj(τj) < 0 for i = 1, 2, . . . , rj. (4)

Proof: Let the Lyapunov function be defined as [8]

V̇ =
J∑

j=1

v̇j(t) =
J∑

j=1

[
ẋT
j (t)Pjxj(t) + xT

j (t)Pjẋj(t)
]

=
J∑

j=1

 rj∑
i=1

hij(t)

(Aij)xj(t) +

Nj∑
k=1

Aikjxj(t− τkj)

+ ϕj(t)

T

Pjxj(t)

+xT
j (t)Pj

 rj∑
i=1

hij(t)

(Aij)xj(t) +

Nj∑
k=1

Aikjxj(t− τkj)

+ ϕj(t)


≤

J∑
j=1

rj∑
i=1

hij(t)x
T
j (t)

[
(Aij)

TPj + Pj(Aij)
]
xj(t) +

J∑
j=1

[
ϕT
j (t)Pjxj(t) + xT

j (t)Pjϕj(t)
]

+
J∑

j=1

rj∑
i=1

hij(t)

Nj∑
k=1

[
αjx

T
j (t)xj(t) + α−1

j xT
j (t− τkj)A

T
ikjPjPjAikjxj(t− τkj)

]
= D1 +D2 +D3,

where

D1 ≡
J∑

j=1

rj∑
i=1

hij(t)x
T
j (t)

[
(Aij)

TPj + Pj(Aij) + αjNjI
]
xj(t),

D2 ≡
J∑

j=1

[
ϕT
j (t)Pjxj(t) + xT

j (t)Pjϕj(t)
]

≤
J∑

j=1

J∑
n=1

xT
j (t)

[
β

(
J − 1

J

)
I + β−1PjCnjC

T
njPj

]
xj(t),
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D3 ≡
J∑

j=1

rj∑
i=1

hij(t)

Nj∑
k=1

α−1
j xT

j (t− τkj)A
T
ikjPjPjAikjxj(t− τkj)

≤
J∑

j=1

rj∑
i=1

hij(t)

Nj∑
k=1

λM

(
Qikj

)
∥xj(t− τkj)∥2 .

That means

V̇ ≤
J∑

j=1

rj∑
i=1

hij(t)x
T
j (t)

[
(Aij)

TPj + Pj(Aij) + αjNjI
]
xj(t)

+
J∑

j=1

J∑
n=1

xT
j (t)

[
β

(
J − 1

J

)
I + β−1PjCnjC

T
njPj

]
xj(t)

+
J∑

j=1

rj∑
i=1

hij(t)

Nj∑
k=1

α−1
j xT

j (t− τkj)A
T
ikjPjPjAikjxj(t− τkj)

≤
J∑

j=1


rj∑
i=1

hij(t)x
T
j (t)Qijxj(t) +

rj∑
i=1

hij(t)

Nj∑
k=1

λM

(
Qikj

)
∥xj(t− τkj)∥2


≤

J∑
j=1

{
rj∑
i=1

hij(t)x
T
j (t)λm(Qij)xj(t)

}
+

J∑
j=1

rj∑
i=1

hij(t)Hj(τj) ∥xj(t)∥2

=
J∑

j=1

rj∑
i=1

hij(t)x
T
j (t)

(
λm(Qij) +Hj(τj)

)
xj(t).

Therefore, the Lyapunov derivative is negative if λm(Qij) +Hj(τj) < 0.
In the above searching optimal inequalities, the evolved bat algorithm (EBA) is pro-

posed based on the bat echolocation fuzzy complex system in the natural world. The
operation of EBA can be summarized by initialization and movement. The artificial
agent is moved using the random walk process xt

i = xt−1
i +D proposed by [7].

3. Example. Consider a two-subsystem multiple time-delay system as follows.
Rule 1: If x11(t) is about M111; Then ẋ1(t) = A11x1(t) +

∑3
k=1A1k1x1(t− τk1),

Rule 2: If x11(t) is about M211; Then ẋ1(t) = A21x1(t) +
∑3

k=1A2k1x1(t− τk1)
with xT

1 (t) = [x11(t) x21(t)], τ11 = 0.3 (sec), τ21 = 0.5 (sec), τ31 = 0.7 (sec),

A11 =

[
−9 1
3 2

]
, A21 =

[
−35 −4
5 −34

]
, A111 =

[
1.2 −0.3
0.6 0.8

]
,

A121 =

[
0.9 0.3
−0.3 0.9

]
, A211 =

[
1 −0.1
0.4 0.6

]
, A221 =

[
0.7 0.1
−0.1 0.7

]
.

Rule 1: If x12(t) is about M112; Then ẋ2(t) = A12x2(t) +
∑3

k=1A1k2x2(t− τk2),

Rule 2: If x12(t) is about M212; Then ẋ2(t) = A22x2(t) +
∑3

k=1A2k2x2(t− τk2)
with xT

2 (t) = [x12(t) x22(t)], τ12 = 0.4 (sec), τ22 = 0.6 (sec), τ32 = 0.8 (sec),

A12 =

[
−10 1
1 3

]
, A22 =

[
−34 −4
3 −33

]
, A112 =

[
0.8 0.2
−0.5 0.5

]
,

A122 =

[
1 0.3
0.2 2.4

]
, A212 =

[
0.7 0.1
−0.4 0.4

]
, A222 =

[
0.9 0.2
0.1 0.7

]
with the interconnection matrices C21 =

[
0.3 0.1
−1.2 1

]
, C12 =

[
5.1 −1.4
1.6 3

]
.
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For the purpose of fulfilling the stability conditions of Theorem 2.1, selecting the proper
parameters becomes the key problem to be dealt with. The fitness function is formulated

by EBA algorithm with LMI optimization positive definite matrixes P1 =

[
0.88 0.22
0.22 0.65

]
,

P2 =

[
0.8 0.22
0.22 0.5

]
. Simulation results are illustrated in Figures 1 and 2 with arbitrary

conditions. From Figures 1 and 2, we can observe the arbitrary initial conditions will
converge to be asymptotically stable which thus prove the reliability and effectiveness of
the proposed theorem in this paper. In the meanwhile, the numerical simulation is used

Figure 1. The state response of system 1

Figure 2. The state response of system 2
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to illustrate the design concept and feasibility of the proposed controller design is straight
and easy to be demonstrated in practical engineering problems.

4. Conclusions and Future Work. A stability criterion is derived in this paper from
Lyapunov’s direct method for time-delay systems. The proposed stability conditions are
conceptually simple and straightforward. An example is given to demonstrate the feasi-
bility of the result. As can be seen from the simulated results, the anticipated automated
viewpoints will be achieved and the instant control laws of the system state variables will
also be simulated to be converged to zero.
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