
ICIC Express Letters
Part B: Applications ICIC International c⃝2019 ISSN 2185-2766
Volume 10, Number 1, January 2019 pp. 17–24

PERFORMANCE EVALUATION OF NON-PREEMPTIVE EARLIEST
DEADLINE FIRST SCHEDULING TECHNIQUES

Jamal Alhiyafi

Department of Computer Science
College of Computer Science and Information Technology

Imam Abdulrahman Bin Faisal University
P.O. Box 1982, Dammam 31441, Saudi Arabia

jalhiyafi@iau.edu.sa

Received August 2018; accepted November 2018

Abstract. The deadlines associated with periodic tasks are of great importance to the
functionality of a real-time system. To fulfill the deadline requirement of real-time sys-
tems, various scheduling policies are applied. Among these scheduling algorithms, the
earliest deadline first scheduling algorithm is an optimal technique under preemptive class
which promises 100% system utilization. Unfortunately, this approach does not exhibit
optimal performance when considered for non-preemptive systems. Due to its wider ac-
ceptance in industry, the earliest deadline first scheduling algorithm has been studied
extensively as an optimal scheduling algorithm and several feasibility techniques do exist
to validate the timing constraints of the system. In this work, we extend our previous
results and study the behavior of closely related feasibility tests under varying system
utilizations for the non-preemptive earliest deadline first algorithm and show that the
performance of a non-preemptive scheduling algorithm degrades significantly at a system
utilization of 80% or higher, irrespective of the scheduling policy.
Keywords: Operating systems, Non-preemptive systems, Online schedulability, Real-
time systems

1. Introduction. The main goal of general operating systems is resource management
and resources such as CPU need to be managed efficiently to maximize overall system
performance. In real-time operating systems, in addition to efficient resource manage-
ment, another constraint is meeting the deadlines associated with task and hence theatri-
cal validation is needed. The operating systems scheduler is responsible for scheduling
tasks on the CPU and provides two main classes of schedulers, namely preemptive and
non-preemptive. Preemptive scheduling results in higher resource utilization but the asso-
ciated overhead for context switch is high. On the other hand, non-preemptive scheduling
provides reduced system utilization but offers the advantage of simple implementation.

Respecting the task deadline is one of the most critical attributes of real-time systems
and cannot be compromised under any possible scenario. In such systems, heuristic ap-
proaches can result in improved resource utilization but such approaches become irrelevant
in real-time systems, especially for hard real-time systems where deadliness can result in
catastrophic consequences. To validate the timing constraint of real-time systems, statis-
tical analysis becomes irrelevant and such a system must be validated mathematically.

Scheduling of a real-time system is mainly divided into two broader classes: (i) pre-
emptive, and (ii) non-preemptive. Preemptive scheduling allows task interruption at any
point in time [1-12], while non-preemptive algorithms allow the running task to execute
continuously till completion of task CPU requirement [13-16]. In comparison to preemp-
tive scheduling algorithms, non-preemptive algorithms are simple to implement due to a
less number of context switching requirements [13].
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For preemptive systems, Earliest Deadline First (EDF) scheduling is an optimal tech-
nique [17] established in 1973 for a set of periodic tasks with relative deadlines equal to
their task periods. However, EDF loses its importance for a non-preemptive counterpart
as the system allows a running task till completion. The available feasibility techniques
[13,14,16,18,19] have high computational complexity associated and hence becomes un-
useable in systems, especially when deployed to online systems. In such systems, more
time is wasted calculating the feasibility of the task rather than using CPU for real pro-
cessing of tasks. This issue is of paramount importance for online schedulability of the
system. Baruah and Chakraborty in [20] showed that polynomial time approximation
algorithms exist for both preemptive and non-preemptive scheduling classes of recurring
task models. Authors in [13] established a feasibility test for non-preemptive EDF that
was further extended in [14].

Under dynamic scheduling, the non-preemptive scheduling has been utilized in many
commercial operating systems such as Micro-Controller Operating Systems (uC/OS) [21],
Real Time Operating System (RTOS) [22], and Kernel Interpolation for Scalable Struc-
tured Gaussian Processes (KISS-GP) [23]. However, the computation cost associated with
respective feasibility condition is very high. Though promising, the complexity of such
systems is still pseudo-polynomial and there exist a plethora of results. To the best of
our knowledge, no analysis of such systems has been performed till date. In this work, we
compare the existing techniques to assist the designer in making informed decisions while
designing the system of their interest.

For non-preemptive execution, authors in [24] introduced a precautious-rate monotonic
as a predictable linear-time. The test in [24] is applicable to online non-preemptive
scheduling systems. Authors in [15] solved the open problem of non-preemptive scheduling
of mixed-criticality systems. Under the work done in [15], a solution for harmonic task set
on a uni-processor system was presented. The problem of testing feasibility for all tasks
was formulated into a sufficient condition in [25]; however, the complexity associated
with such conditions is still high. In this work, we extend our previous work in [25] and
study the performance of various feasibility tests for the task sets under various sizes
and utilizations. However, experimental results are missing in [25] and there is a need
to evaluate related approaches for various system utilization. We highlight the pros and
cons of existing techniques and show that technique presented in [25] is the most efficient
one. Our analysis shows that the performance on preemptive EDF degrades significantly
with higher CPU utilization as it is very likely that the system is executing a low priority
task at any point in time and cannot preempt in favor of awaiting higher priority tasks
due to the restriction of non-preemption of running tasks.

The rest of the paper is divided into five sections. Section 2 discusses the related work
that provides the foundation for our work and sketch of the system model. The main
results are analyzed in Section 3. Experimental results are discussed in Section 4, and the
paper is concluded in Section 5.

2. Background and Related Work. In real-time systems, system predictably is achi-
eved by allocating respective priorities to individual tasks in the system. These priorities
are subject to some pre-established criteria. The most popular one is the activation
rate or deadline [26,27]. Under a single processor system, the fixed-priority scheduling
algorithm assigns the same priority to all of the jobs/instances of a particular task. A
task then creates a sequence on jobs after regular intervals called time periods [26,27].
Unlike fixed priority systems, dynamic-priority scheduling algorithms place no restrictions
on priority assignment. In dynamic-priority algorithms, when two tasks have the same
absolute deadlines, the algorithm selects the task at random. For this work, in our task
model, task periods of any two tasks cannot be the same; hence, a unique priority is
assigned to each task.
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Assuming an unlimited number of priority levels, a necessary and sufficient condition
saying that the system utilization must be less than or equal to 100% for EDF was
derived in [17]. The test established in [17] is a simple sufficient condition having O(n)
complexity and most suitable for online schedulability analysis. This formulation allows
EDF to suppress the fixed-priority counterpart such as Rate-Monotonic (RM) algorithm
from a utilization perspective. The sufficient condition derived for RM also has O(n)
complexity but it traded system utilization i.e., the test can guaranty system feasibility
when total utilization is not more than ln(2) which results in wasting 31% of CPU slots.

In 1991, the most celebrated results were derived in [13] for non-preemptive EDF. The
work done in [13] was extended later in [14,16]. However, all of these tests shared a high
computational complexity which becomes impractical for online systems where feasibility
should be determined efficiently.

Our system model consists of an infinite number of jobs and each job belongs to a
task. The system has n number of tasks to be executed on a uni-processor system. In
the periodic task model, a task Ti is described by three attributes, task period pi that is
the time between any two consecutive instances of Ti, an execution time ci that a task
Ti must get before its next occurrence, and a relative deadline di. For each task, the
system utilization is shown by ci/pi. The cumulative demand for n tasks is represented
by
∑n

i=0(ci/pi).
Our non-concrete task set is represented by T = {T1, T2, . . . , Tn}, where an instance

of Ti is generated at every integer multiple of pi: the kth instance of Ti occurs at time
tk = tk−1 + pi. We show the results for an implicit deadline model of non-concrete [1] for
a real-time system. In our system, interrupting a running task has been disabled and the
task is executed till completion.

Results have been previously established theoretically, but there is a lack of experimen-
tal analysis for non-preemptive class of dynamic priority systems for periodic tasks. To
the best of our knowledge, no experimentation on evaluation of non-preemptive dynamic
priority scheduling algorithms has been done prior to this work. We fulfill this gap by
highlighting the advantages and disadvantages of related techniques and provide experi-
mental results analyzing the behavior of non-preemptive periodic systems under system
utilization starting from 70% to 100% with a step size of 10%. The work described in
this paper will provide insight in regard to feasibility tests for dynamic class and provide
a clear comparison of two alternative solutions.

3. Feasibility Analysis of Non-Preemptive Tasks. System utilization of more than
100% is impossible via a single processor with EDF even under preemptive scheduling
[17]. This condition is also valid in non-preemptive cases. Under a preemptive case, the
entire task set is always feasible on uni-processor systems as long as the system utilization
is

n∑
i=0

ci

pi

≤ 1. (1)

There are cases when the task set that is schedulable using preemptive scheduling
can become un-schedulable on a uni-processor system when non-preemptive scheduling is
used. Thus, a simple analysis test like Inequality (1) is sufficient for a preemptive case.
The non-preemptive counterpart, however, is more complicated as far as the feasibility of
the entire task set is concerned. Non-preemptive scheduling allows the running task to
continue till completion, while a higher priority task has to wait. Various extensions on
no preemptive scheduling have been proposed by assigning a quantum to tasks; however,
the running task has to leave the CPU once the quantum expires. In [13], the feasibility
problem of EDF under a non-preemptive case was answered with Theorem 3.1.
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Theorem 3.1. ([13]) A periodic task set that is sorted in increasing order of the task
period can only be scheduled feasibly under a non-preemptive EDF scheduling policy iff,

n∑
i=0

ci

pi

≤ 1

∀i, (1 < i ≤ n), ∀t, (p1 ≤ t ≤ pi) : ci +
i−1∑
k=1

⌊
t

pk

⌋
ck ≤ t. (2)

From Theorem 3.1, it is clear that the system must evaluate t in a time interval of
(p1 < t < pi) to determine task schedulability. The result of Theorem 3.1 was later
simplified in [19] to confine t to set of a few scheduling points. The work done in [14] can
be reworded as:

Theorem 3.2. ([14]) A periodic task set that is sorted in increasing order of the task
period can only be scheduled feasibly under a non-preemptive EDF scheduling policy, at a
constant slowdown factor of η, if

1

η

n∑
i=0

ci

pi

≤ 1 (3)

∀i, (1 < i ≤ n), ∀t, (p1 ≤ t ≤ pi) :
1

η

(
ci +

i−1∑
k=1

⌊
t

pk

⌋
ck

)
≤ t, (4)

where t ∈ Si =

{
lpi; ∀j, (j = 1, . . . , i); ∀l,

(
l = 1, . . . ,

⌊
pi

pj

⌋)}
where Si is called a set of scheduling points for Ti. The set of scheduling points plays an
important role in schedulability analysis of non-preemptive systems. Recently, another
sufficient condition was established in [25] with the intention to lower the computation
cost of the work done in 3.2. This technique can answer feasibility of the entire task set
by only checking the schedulability of the lowest task as this task will only get CPU time
when there is no pending higher priority task in the queue. The test suggests:

Theorem 3.3. ([25]) A periodic task set that is sorted in increasing order of the task
period can only be scheduled feasibly under a non-preemptive EDF scheduling policy if

n∑
i=0

ci

pi

≤ 1

∀t, (t ∈ Sn) : cn +
n−1∑
k=1

⌊
t

pk

⌋
ck ≤ t. (5)

It is worth noting that Theorem 3.1 is both a necessary and sufficient condition while
Theorems 3.2 and 3.3 are sufficient conditions only. It can be seen that the number of
scheduling points is fixed in Theorem 3.3 and thus, feasibility is tested for any t ∈ Si in
a task Ti. All of the above results are of pseudo-polynomial nature with closed and open
interval of points. In this work, we discuss the efficiency of computation cost of closed
interval tests and count the number of scheduling points needed for both Theorems 3.2
and 3.3. The computational cost has been reduced significantly with Inequality (5) as
only set Sn needs to be tested for task Tn which eventually leads us to the conclusion that
the task set is feasible on a uni-processor system. In case Inequality (5) does not hold,
the entire system is declared infeasible. Theorem 3.3 has been established theoretically
in [25] while the experiential evaluation is performed in this work. It is also evident that
for a feasible set, Theorem 3.2 will need to analyze all points in sets, i.e., S1, S2, . . . , Sn,
while Theorem 3.3 only needs the points in one set generated by the lowest priority task.
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Having the aforementioned results, we compare the related techniques in the following
section.

4. Experimental Evaluation. For experimentation, we generated a task set from size
10 to 100 with step size of 10. Task periods were generated with uniform distribution
and the task computation demand for an individual task was obtained in the range of 1
to task period. To have confidence in our results, each experiment ran 200 times and the
average values plotted accordingly. For the purpose of analysis, we represent Theorem
3.1 by Improved Test (IT) and Theorem 3.3 by Enhanced Test (ET). We compared the
run time performance on IT and ET with system utilizations of 0.70, 0.80, 0.90 and 1.0.
We drew random values for a fair comparison of both solutions. As it is understood that
a task set is normally unschedulable with utilization higher than 0.9. The same has been
reflected in our experimental analysis.

It can be seen in Figures 1-4 that both IT and ET take less time when the task set
is low and take a longer time when the task size increases. This behavior is due to the
fact that only a few calculations are needed for the smaller sized task set. On the other
hand, the number of calculations increases significantly for larger task sets, as the task
period becomes larger. In such a scenario, pi/p1 inequalities need to be tested for each
task which is the worst case for the IT technique. In contrast, ET performs better due
to testing only pn/p1 points in total for the entire task set. In Figure 1, maximum tasks
are non-preemptive schedulable at 70% system utilization. The same trend is shown in
Figure 2, where the CPU requirement is 80%. This is the point where larger task set
becomes infeasible due to more interference of lower priority tasks on execution of the
higher priority tasks. At higher utilization, the system infeasibility is concluded earlier as
reflected in Figure 3 and Figure 4. It can be seen that both IT and ET tests take more
time as maximum tasks need to be evaluated before infeasibility is determined. However,
the infeasibility of the overall system is determined much early with few tasks analyzed
when system utilization is 100%, as shown in Figure 4. In all cases (Figures 1-4), ET
outperforms IT due to its implicit characteristic of confining scheduling points to a subset
Sn only. Our experimental results are aligned with the theoretical formulation of ET,
which is the intended contribution of this work.

Figure 1. Performance at 70 percent system utilization
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Figure 2. Performance at 80 percent system utilization

Figure 3. Performance at 90 percent system utilization

Figure 4. Performance at 100 percent system utilization
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5. Conclusion. In this work, we have studied the effect of non-preemptive scheduling
on system feasibility. All related tests have been applied to a periodic task model where
tasks are independent, and the number of priority levels is infinite. The task sets were
analyzed under a dynamic priority assignment policy for non-preemptive cases. We drew
the analysis for the task sets in sizes ranging from 10 to 100 at various CPU utilizations. It
is concluded that the system utilization as well as the size of the task set has a significant
impact on the feasibility of task due to the non-preemptive portion of the low priority
tasks. As a future work, there is a need to study the behavior of non-preemptive feasibility
tests by using a lowest priority first approach where feasibility of a system starts with the
lowest priority.
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