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Abstract. This paper presents a new method to estimate the battery state-of-charge
(SoC) in photovoltaic (PV) systems using numerical current integration algorithm with
incident open circuit voltage (OCV) observation. The proposed methodology is more reli-
able compared to existing approaches in literature, especially under disconnect conditions.
The existing stand-alone coulomb counting method is not robust during power reset of its
electronic charger unit as well as during battery disconnection for protections or main-
tenance. Meanwhile, the traditional OCV charge estimations must isolate battery from
the source and the load during OCV measurement, resulting in an incident power dis-
continuity. Voltage-based estimation itself without OCV measurement is not feasible
for charging with ambient energy sources such as solar energy. We propose accordingly
the combination of the numerical current integration with an incident OCV observation
methods to improve the reliability of the existing battery SoC estimation methods. The
experimental results present that the proposed techniques can estimate the battery SoC
simply and effectively.
Keywords: Power electronics, Battery state-of-charge estimation, Coulomb counting,
Open-circuit voltage method, Numerical integration

1. Introduction. Renewable energy has been an important issue in recent years. Some
renewable energy sources are ambient energy sources, i.e., the continuity of their constant
availability cannot be predicted. Sunlight for instance as photovoltaic (PV) energy source
is only available during daytime. Therefore, a battery system is sometimes needed to store
the PV-based electric energy, such that it can be used at night. So far, new batteries with
new materials and technologies have been developed. The important specifications of the
battery are their ampere-hour capacity over weight ratio, and their life cycle.

Nevertheless, some PV-based power systems are not equipped with a battery, where an
automatic transfer switch is used to switch the supply from existing grid, as the electric
energy from the PV panels is not available. Some reasons of the battery absence are the
high cost and low life cycle. The life cycle of a battery depends on the used technology
to develop it (internal aspect) and also on the way to protect it from damage (external
aspect). Battery protection can be effectively made when the battery lifetime model can
be assessed well that can be used to predict its aging condition [1]. The use of a well-
configured cooling system can potentially lengthen the battery lifetime [2]. Furthermore,
there are two battery operating conditions that can lower the battery life cycle, namely
over-charging and over-discharging or under-voltage discharging. Both operating modes
must be avoided to lengthen the battery life cycle.
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In order to operate the batteries outside the aforementioned operating modes, we should
be able to detect the signs indicating that the battery will come into the operating modes.
To detect the operating condition, its state-of-charge (SoC) must be well estimated. SoC
can be defined as the amount of electric charges stored in the battery. Physically, the
electric charge (in coulomb) is difficult to measure. The possible parameters that can be
measured are voltage, current and in any cases battery temperature. Equation (1) shows
the general SoC estimation equation using the OCV method. The estimated battery
charge is a function of open-circuit voltage (VOC) measurement. The function can be
realized using a look-table or an interpolation function.

SCh = f(VOC) (1)

Equation (2) shows the general SoC estimation equation using coulomb counting or
ampere counting or current integration. Qn is the nominal capacity, i.e., the maximum
amount of electric charges that can be stored in the battery. SCh(t− 1) is the initial SoC
estimation, and iB(t) is the current flowing to/from the battery.

SCh(t) = SCh(t − 1) +
1

Qn

∫ t

t0

iB(t)dt (2)

Battery SoC estimation using existing stand-alone coulomb counting method [3] is
not robust and reliable. When power reset is applied to its electronic charger unit then
the coulomb/current integration will disappear from the control program memory. This
happens also when the battery is disconnected, and separately charged or discharged, or
when the battery is replaced with a new battery with different initial SoC condition.

The traditional OCV-based estimation is not efficient, since the battery must be isolated
from the source and the load during OCV measurements. Moreover, the voltage-based es-
timation, which is implemented without OCV measurement to avoid power discontinuity,
is not feasible for charging with ambient energy sources such solar energy.

Based on those problems, a novel approach to estimating battery SoC is proposed in
this paper. A numerical current integration is proposed to avoid power discontinuity, and
is combined with an incident OCV observation to estimate correctly the initial battery
SoC. The OCV is made only incidently when the system power is reset or when the battery
is removed for maintenance purpose. As the system power is on or the battery is again
on-system-grid after the aforementioned incidents, a single initial SoC estimation using
OCV method is made and then followed by the numerical current integration method.
The proposed technique can effectively improve the reliability of the existing battery SoC
estimation methods.

The remaining parts of the paper are organized in the following sections. Section 2
presents the state of the arts of battery state-of-charge (SoC) estimation methods. Sec-
tion 3 presents the hardware design and implementation as well as the design concept of
the proposed SoC estimation method. The testing results of the hardware are presented
in Section 4. Finally, the work is concluded in Section 5.

2. State of the Arts of Battery State of Charge (SoC). Table 1 presents the
state of the arts of some existing battery SoC estimation methods. The table shows the
battery SoC estimation method, the used battery type in the experiment or simulation.
The table shows also the used experimental types namely simulation or real hardware
test. Although Kalman-based and non-conventional SoC estimation methods, as shown
in the table, result in more accurate SoC estimation, it is very complex to implement.
As non-conventional method, neural and fuzzy methods require pre-training and prior
knowledge about many battery state conditions, before the SoC estimation algorithm is
constructed.
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Table 1. Works related to the battery state-of-charge estimation methods

Ref., year Battery SoC method Battery type Experiment type
[5], 2013 Neural Network (ANFIS) Lead-Acid Simulation
[4], 2015 Current Integration +

OCV look-up table
NiCd, NiMH, Li-ion,
lead-acid

Real hardware test

[6], 2016 OCV Lead Acid Simulation
[7], 2016 OCV + Kalman filter Lead Acid Simulation
[8], 2017 OCV + Kalman filter Li-ion Real hardware test
[9], 2017 H-inf. filter + unscented

Kalman filter
Li-ion Simulation

[10], 2017 Extended Kalman filter Li-ion Simulation
[11], 2017 Dual adaptive particle

filter
Li-ion Simulation

[12], 2017 Sliding mode observer Li-ion Real hardware test
[13], 2017 Classifier-based selected

gain observer
Li-Iron-Phosphate
(LiFePO4)

Real hardware test

[14], 2016 Model-based estimation Li-Iron-Phosphate
(LiFePO4)

Real hardware test

[15], 2017 Extended Kalman filter Li-ion Simulation
[16], 2017 Ampere Counting + Slid-

ing mode + Fuzzy logic
Lead-Acid Simulation

[17], 2017 Ampere Counting not mentioned Simulation
This paper, 2018 Current Integration +

OCV interpolated
Lead-Acid Real hardware test

Principally, the battery SoC can be simply estimated from its open-circuit voltage
observation. Our proposed method is almost similar to the work in [4] that combines
current integration and OCV observation. The difference is that its SoC estimation is
made based on a look-up table (LUT) approach, in which the OCV is the table index,
while our proposed method uses a simple interpolation equation, in which the OCV is
its independent variable and SoC is the dependent variable. The LUT approach has
limitation, especially when any OCV data (intermediate OCV point) does not appear in
the table.

Our approach, which uses an interpolation equation, is more convenient, where for
each OCV point, the estimation can be simply calculated from the interpolation equa-
tion. Moreover, when it is implemented on a microcontroller, as the size of the LUT is
larger, then its compiled program subroutine will require larger program memory size.
The interpolation equation meanwhile will need smaller memory size when its computer
program subroutine is compiled and embedded on the microcontroller program memory.
Hence, our proposed SoC method contributes to its simplicity in terms of algorithm and
computing efficiency, as well as its simplicity to implement.

Other battery SoC estimation methods are presented in Table 1 such as Kalman filter,
sliding mode observer, sliding mode fuzzy logic, neural network or artificial neural net
adaptive fuzzy inference system (ANFIS), and adaptive particle filter. Principally, all
methods are very effective to estimate the battery SoC with certain degree of comput-
ing robustness and reliability. However, their computing complexity is higher than our
proposed method, leading to higher computing power consumption.

3. Design and Implementation.

3.1. Hardware. The block diagram of the testing setup is presented in Figure 1(a). The
power line is depicted as bold line in the figure. Three relays are used for system and
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(a) Testing diagram (b) Hardware photograph

Figure 1. Hardware design and the photograph

battery protection. Relay 1 is used to isolate the power source from the system. Relay 2 is
used to isolate the battery from the system, and Relay 3 is used to isolate the load from the
system. When the open-circuit voltage of the battery will be measured, the Relay 2 will
be open. Voltage and current sensors are used to measure the voltage and current at the
charger and battery terminal, respectively. The SoC estimation algorithm is embedded
on the electronic control unit. The photograph of the real hardware implementation is
shown in Figure 1(b).

3.2. The proposed SoC estimation method. In this paper, two battery SoC estima-
tion methods are proposed. The first one is a numerical current integration using Simpson
Method with incident OCV observation, which is called NCI Simpson with OCV method.
The other one is a numerical current integration using trapezoidal method with incident
OCV observation, which is called NCI Trapezoidal with OCV method. The interpolated
equation to approximate the battery SoC is shown in Equation (3). The terms Vb,max

and Vb,min are the maximum and minimum battery voltages, respectively, and VOC(t) is
battery open-circuit voltage observed at the time incident t.

SCh(t) =
VOC(t) − Vb,min

Vb,max − Vb,min

(3)

The Simpson and trapezoidal terms are used to define that the numerical integration of
the currents is approached using trapezoidal approximation, as shown in Equation (4) and
Simpson approximation, as shown in Equation (5), respectively. The performances of both
methods are compared with other methods, namely NCI Simpson and NCI Trapezoidal,
both without OCV observation, as well as voltage-based SoC estimation method.∫ tn

tn−1

iB(t)dt ∼= (tn − tn−1)
iB(tn) + iB(tn−1)

2
(4)

∫ tn

tn−2

iB(t)dt ∼= (tn − tn−2)
iB(tn) + 4iB(tn−1) + iB(tn−2)

6
(5)

Formally, the NCI Trapezoidal with incident OCV method is shown in Equation (6).
At initial power on the SoC is estimated using Equation (3). Afterward, namely dur-
ing normal operation, the SoC is estimated using Equation (4), where in this case,

SCh(tn−1) =
VOC(tn)−Vb,min

Vb,max−Vb,min
. The formal model of the NCI Simpson with incident OCV

method is presented by replacing the sub equation in Equation (6) for normal operation
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case with Equation (5).

SCh(tn) =


VOC(tn) − Vb,min

Vb,max − Vb,min

; n = 0 (initial power on)

SCh(tn−1) + (tn − tn−1)
iB(tn) + iB(tn−1)

2
; n > 0 (normal operation)

(6)

4. Testing Results. In order to see the performance of the SoC algorithm, then we
implement directly the real in-circuit testing. Three testing modes are made, i.e., SoC
estimation testing during charging process using electric power sources from power supply
and from PV panel, and SoC estimation testing during discharging process.

Figure 2(a) presents the SoC estimation testing results using the NCI with trapezoidal
integration combined with incident OCV method (Trapesium NCI+OCV), the NCI Simp-
son integration combined with incident OCV method (Simpson NCI+OCV), the NCI with
trapezoidal integration method (Trapesium NCI), NCI with Simpson integration method
(Simpson NCI) and the voltage-based method during charging process using an electric
power source from a power supply. In this test experiment, the charging parameters rates
are relatively constant. The Trapesium NCI+OCV, Simpson NCI+OCV, Trapesium NCI
and Simpson NCI present similar performance, where the SoC tends to increase linearly.
Meanwhile, the voltage-based method presents nonuniform rate of SoC change.
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Figure 2. Battery’s SoC, current, voltage and power measurements during
charging process using power supply

The battery’s and power supply’s current, voltage and power of the charging process
are presented Figure 2(b). As seen from the figure, the charge current tends to be lower
as the SoC is increased, while the battery voltage increases linearly. This condition
is certainly acceptable, because when the battery is nearly full, the amount of electric
charges flowing to the battery will be lower or approach saturating condition. However,
the battery terminal voltage will be higher and saturate at any maximum voltage point.
In the figure, we can see that the battery voltage approaches 15V steady-point.

Figure 3(a) presents the SoC estimation using the five SoC estimation methods men-
tioned in the previous subsection during charging process with electric power source from
a PV panel. In this experimental test, a non-empty battery is used, or the battery has
been charged about 22% before the testing is started. As the results, the Trapesium
NCI+OCV and the Simpson NCI+OCV show the same correct SoC computation. The
Trapesium NCI and Simpson NCI meanwhile start computation from zero SoC, because
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Figure 3. Battery’s SoC, current, voltage and power measurements during
charging process using PV panel
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Figure 4. Battery’s SoC, current, voltage and power measurements during
discharging process

SoC computing algorithm makes numerical current integration directly without measur-
ing firstly the open circuit voltage of the battery. Hence, they missed the initial SoC
value.

In this experiment test setup, the charging parameters rates are variably different de-
pending on the climate condition that affects the power converted by the PV panel. The
battery’s and power supply’s current, voltage and power of the charging process are pre-
sented Figure 3(b).

Figure 4(a) presents the SoC estimation during discharging process using the NCI with
trapezoidal method, the NCI with Simpson method and the voltage-based method. As
shown in the figure the NCI with Trapezoidal method and the NCI with Simpson method
show the same estimation values, i.e., a curve that is almost linear. The SoC curve of
the voltage-based method presents meanwhile deviation from the curve given by the NCI
methods. Following the electric charge reduction in the battery, then the current, voltage
and power curves tend to decrease to a certain value as shown in Figure 4(b).
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5. Conclusion. This paper has presented the battery SoC estimation method that com-
bines incident OCV observation and numerical current integration (NCI). To integrate
current flow from/to battery, the discrete-time numerical integration methods are used.
Voltage-based SoC estimation (without open-circuit measurement) is not suitable espe-
cially for charging process using ambient energy sources, since the battery voltage changes
variably or randomly overtime.

OCV measurements for SoC estimation will isolate battery from the system resulting
in power discontinuity during the open-circuit measurements. Therefore, in our method,
the OCV observation is seldom made, i.e., only after battery replacement or initial power
on, which are rare cases in real application run. Meanwhile, operating the NCI method
alone is not reliable in a few cases. Therefore, combining the NCI and the OCV method,
as presented in this paper, results in a more reliable SoC estimation.

The performance of the NCI Trapezoidal + OCV method and the NCI Simpson + OCV
method is the same. However, the former is better in terms of its lower computing cost
due to its simpler approximation equation.

In the future, the battery SoC estimation will be integrated with a battery protection
mechanism in the single electronic control unit. The concept of Internet-of-Things for
the battery SoC observation by users will also be applied. The user can receive online
information about the battery state, including some warnings when the corresponding
automatic battery protection does not work properly. Hence, the users can hand over a
manual protection via Internet or a mobile application to secure the battery life cycle.
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