
ICIC Express Letters
Part B: Applications ICIC International c⃝2018 ISSN 2185-2766
Volume 9, Number 9, September 2018 pp. 907–915

A FEASIBILITY STUDY OF SORTED TASKS SET

Saleh Alrashed

College of Computer Science and Information Technology (CCSIT)
Imam Abdulrahman Bin Faisal University (IAU)
P.O. Box 1982, Dammam 31441, Saudi Arabia

saalrashed@iau.edu.sa

Received March 2018; accepted June 2018

Abstract. The feasibility problem of real-time system under static priority assignment
has been actively investigated and a plethora of results are available, both in exact and
in-exact forms. On the one hand, in-exact conditions belong to pseudo-polynomial com-
plexity class while exact conditions are polynomial. On the other hand, exact conditions
can promise up to 100% system utilization while in-exact conditions impose bounds on
system utilization. Recently, exact and in-exact conditions were combined for faster fea-
sibility analysis; however, the impact of analyzing the schedulability of maximum tasks
with in-exact condition is yet to be studied. To fill this gap, we partition the task set
into two parts such that schedulability of maximum number of tasks is determined with
the in-exact condition and only a smaller number of tasks are left to be analyzed with
exact condition. Our proposed method is based on existing techniques and respects the
timing constraints of the presented system as the portioning of task set is only subject to
feasibility analysis. Experimental results show that when compared with closely related
counterparts, our solution performs better, especially for the task sets having low system
utilization.
Keywords: Operating system, Real-time systems, Fixed-priority scheduling, Feasibility
analysis, Deadline monotonic scheduling

1. Introduction. Scheduling of real-time systems with deadline guarantees is a very
complicated problem due to its instinctive NP nature [1, 2, 3, 4, 5]. The two broader
classes of real-time systems are static and dynamic priority systems. In static systems,
the priority of task remains the same throughout but priority of a task may change at
runtime in dynamic priority systems. These feasibility tests for real-time systems can be
divided into in-exact conditions and exact conditions [2, 4, 6, 7, 9, 10, 16, 19].

Various solutions have been proposed to lower the computation cost of feasibility tech-
niques under fixed priority systems and can be divided into exact and in-exact classes [2, 5].
However, the complexity of exact condition is still pseudo-polynomial and attempts have
been made to lower the computation cost of such systems [6, 11, 12, 13, 14, 15]. The
RM feasibility analysis was extended [18, 20] to many application domains. A Hybrid
Approach (HA) was derived in [7] by utilizing both in-exact and exact conditions aim-
ing faster feasibility analysis for Rate Monotonic Scheduling (RMS) [1]. Authors in [7]
portioned the task set into two subsets and feasibility was determined accordingly for
RMS algorithm where task periods and deadlines have the same values. The need for
such solution becomes even more appealing when accuracy is the primary interest while
performance is also desirable. In contrast, we propose sorting the task set and extend the
results to more general static priority scheduling algorithm known as deadline monotonic
[8] by splitting the task set for faster feasibility analysis. Our solution is more appealing
to the sorted task list having higher system utilization.
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In this work, we study the effect of sorting the task set based on individual tasks uti-
lization and determine its feasibility according to RM scheduling algorithm. We divide
a task set such that feasibility of maximum number of tasks is answered by the in-exact
condition. This solution enables us to conclude the system feasibility much faster when
compared to existing methods that are subject to evaluation under exact test. The feasi-
bility of the first part that consists of sorted task set is tested with LL-bound [1], while the
2nd part is tested with exact condition proposed in [14]. We show that this arrangement
significantly reduces the computations cost involved and results are encouraging from the
run time perspective.

We divide the rest of the paper into 4 sections. Section 2 introduces the preliminaries
and develops the task model. The main work is described in Section 3, while Section 4
presents the experimental results. The paper is concluded in Section 5.

2. Background and Problem Formulation. A real-time system consists of a set of
periodic tasks and the two main approaches for scheduling such tasks on the processors
are (i) preemptive, and (ii) non-preemptive systems. In preemptive scheduling, execution
of an executing process may be stopped if a higher priority process requires service, while
in non-preemptive systems once a task is scheduled for execution, it runs to completion
or until it is blocked. For convenience, the notations that are used frequently in rest of
the paper are given in Table 1.

Table 1. Notations

Notation Meaning
Γ The set of periodic tasks
ci Worst case execution time of τi

pi Period of τi

di Deadline of τi

ui Utilization of τi

n Number of elements in Γ
U Utilization of Γ
Ui Utilization of i lower priority tasks
wi The cumulative workload of τi

priority(τi) Priority of τi

P-I Subset of task set consisting of low utilization tasks
P-II Subset of task set consisting of high utilization tasks
Ri Response time of τi

For preemptive systems, under static priority assignment, Deadline Monotonic Sched-
uling (DMS) [8] is optimal in the sense that if there exists a static priority schedule that
meets all deadlines for a real-time system, then DMS will produce a feasible schedule.
DMS becomes RMS when di = pi; ∀i, τi ∈ Γ.

With DMS, tasks with shorter deadline are assigned higher priorities. In this work, we
propose a solution for a faster analysis to determine if a task set can be scheduled with
DSM. We assume an implicit deadline model of real-time system Γ = {τ1, τ2, . . . , τn} of
n periodic tasks, where a task τi has computation demand ci, period pi, deadline di, and
response time Ri. Furthermore,

• the number of tasks in the task set is static;
• real time of all tasks are released at t = 0;
• all tasks have known worst-case computation times;
• each task instance generated is completed before another jobs of the same task

appears;
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• there is no dependency among tasks.

The utilization of a task τi is ui = ci/min(di, pi) and the total system utilization for i
tasks is represented by Ui. The entire task set is DMS feasible if:

Un ≤ n
(
21/n − 1

)
. (1)

The test given in Inequality (1) is an in-exact condition for DMS with a time complexity
of O(n) and called LL-bound. The exact condition for DMS based on Ri was proposed
in [13] called Response Time Analysis (RTA). According to RTA, the response time Ri

of a task τi is at least equal to its own execution time, so R0
i = ci. Let R#n

i be the n-th

approximation to the true value of Ri. During the l-th iteration for l ≥ 1, R#l+1
i can be

computed by

R#l+1
i = ci +

∑
j∈T

⌈
R#l

i

pj

⌉
cj, (2)

which converges after a finite number of iterations, as the sum is a monotonically increas-
ing function of l. The loop is terminated either when R#l+1

i = R#l
i and R#l

i ≤ di for

some l or when R#l+1
i > di, whichever occurs first. In 1998, authors in [14] proposed

an improvement over RTA called Response Time Improved (RTI) by initializing a higher
initial guess value to a task τi+ as R0

i+1 = Ri, assuming Ri ≤ di. By extending the work
done in [7], we now present the main results in Section 3.

3. Portioned Based Exact-Test. As seen with Equation (1), all the n tasks are schedu-
lable if the system utilizations are not more than 69%. With our test, we go up to 100%
utilization and propose an exact condition that works in hierarchical approach as:

• P-I: represents a group of tasks having lower utilization and schedulability is an-
swered with LL-bound.

• P-II: denotes lower priority tasks and feasibility is determined by RTA.

Now, the feasibility of Γ to be tested with exact condition. To do so, first of all, we
sort the task set in the order of utilization. Let us sort the Γ based on ration ci/di. For
P-I, we extract task from the Γ such that a generic task τi is schedulable as DMS if:

Ui−1 + ci/di ≤ i
(
21/i − 1

)
. (3)

It is worth noting that, the above formulation does not mean that the lowest utilization
task has the highest priority. Rather, P-I is constituted by task having lower utilizations
as the motivation for this group is to have maximum task so that only a sub part is left
over for P-II. Inequality (3) shows that tasks are grouped into P-I and no task ever misses
the deadline. It can be seen in above formulation that tasks are shifted to P-I in their
increasing utilization order. Any task τj that fails in this test becomes the first element
in P-II. We show in the following that no higher utilization task exists in P-I.

Theorem 3.1. P-I having utilization of n
(
2(n−1) − 1

)
is RM-scheduable with LL-bound

if all the member tasks in P-I are sorted by low utilization.

Proof: There are two parts of the proof:
a) To test RM-feasibility of P-I and the proof is given in [1].
b) Determine P-I is sorted by task utilization and we prove this fact by contradiction.
Assuming U represents the total utilization of i lower utilization tasks that are schedu-

lable with LL-bound, except τj and τk. cj/dj and ck/dk are the utilization of any two tasks
τj and τk. Let cj/dj < ck/dk and τk ∈P-I while τj /∈P-I. So, when i tasks are schedulable,
then:

U ≤ i
(
2(1/i) − 1

)
(4)
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Since i tasks are schedulable, Inequality (4) holds. Adding τk:

U + ck/dk ≤ i
(
k1/k − 1

)
Adding τj:

U + cj/dj ≤ i
(
j1/j − 1

)
Therefore,

ck/dk ≤ cj/dj

which is contradiction. This completes the proof. �
It is worth noting that there is no restriction that all tasks in P-I are higher priory

tasks as sorting is done based on the utilization factors and not on task priorities while
grouping them. The complexity of P-I is due to two factors (i) sorting tasks, and (ii)
checking against LL-bound, which is O(n log n) and O(n), respectively.

We now populate the second subset P-II. It is evident from Inequality (3) that P-II
consists of only higher utilization tasks and it is unknown weather it is DMS feasible or
not. Since in-exact conditions are not applicable to P-II, we apply RTA for answering the
feasibility of P-II. Before that we relax the assumption of sorted task needed for P-I. For
P-II, all tasks are re-arranged by the task deadlines, i.e., the larger the task deadline is,
the lower the priority is. Assuming τk is the last task that was assigned to subset P-I and
task τl is not feasible in P-I, so τl becomes a candidate for subset P-II. A task cannot be
spitted between two groups and each task must be either in group P-I or P-II. For any
two tasks τi and τj, the corresponding sets are represented by P-I and P-II, respectively.
If τi ∈ P-I, then the τi does not exist in P-II.

Now, the schedulability of P-II has to be analyzed with RTI. The actual priorities of
the task in P-II are assigned as per standard DMS policy. These tasks are the tasks with
higher individual utilizations. It is very likely that majority of tasks in P-II have larger
task periods than those in P-I. The associated advantage with larger periods is that Ri

makes significant impact in the analysis for lower priority tasks {τi+1, τi+2, . . . , τn}. Since
we cannot ignore the task in P-I, the workload due to these tasks must be considered while
testing the DM schedulability of τk. For each task τl in P-II, RTI is used to determine its
feasibly. The task continues as long as Rj <= dj; otherwise, P-II is declared infeasible.
With this formulation, it can be seen that the task parameters remain intact as per original
set. Once feasibility of P-II is answered positively, the actual priority of the task assigned
as per standard DMS policy is applied. As a concluding step, P-I and P-II are combined
and schedule the Γ according to DMS on a uni-processor systems. These intermediate
arrangements pertaining the feasibility analysis only and the spirit of DMS algorithm is
respected. As a concluding step, we assign static priorities on task deadlines such that
for any two tasks τi and τj, priority(τi) > priority(τj) ⇒ deadline(τi) < deadline(τj),
while ties are broken arbitrarily. We represent our technique by Sorted-Technique (ST)
and sketch the details in Algorithm 1 that accepts Γ and returns whether Γ is DMS
schedulable or not.

4. Experimental Results. In this section, we compare ST with two closely related
feasibility tests: RTI, HA. We study the behavior of these tests from the computation
cost perspective. It should be noted that both RTI and HA are exact conditions and may
answer schedulability of Γ when total system utilization is less then or equal to 100%.
For experiments, to align with existing works, we generate random task sets from size 10
to 50. The task size is increased with step size of 10. Task deadlines are produced in
the range of [10, 10000] in Matlab with uniform distribution. Similarly, for corresponding
task computations, random values are taken in the range of [1, di]. Experimentation is
done on Pentium-VI (Intel, Core-2 CPU), 1.4 GHz with 2GB RAM. Each reading is taken
from running a task set for 200 iterations. We normalize all the values to have a better
idea of the performance of the related techniques.
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Algorithm 1.

procedure ST(Γ)
sort Γ in descending order from task utilization perspective;
for all τi ∈ Γ do

if Ui−1 + ci/di ≤ i
(
21/i − 1

)
then

τi is DM schedulable;
P-I += τi;

end if
if τi == τn then

Γ is DM schedulable;
EXIT;

end if
end for
P-II = (Γ − (P-I) − τi);
sort P-II in descending order of task deadline;
for all τj ∈ P-II do

R#l+1
j = cj +

∑
k∈P-I

⌈
R#l

i

pj

⌉
cj;

calculate R#l+1
i = R#l

i ;

if R#l+1
j > dj then

Γ is not DM schedulable;
EXIT;

else
τj is DM schedulable;
P-II += τj;

end if
if τj == τn then

P-II is DM schedulable;
Γ = P-I + P-II;
sort Γ per DM priority;
Γ is DMS feasible;
EXIT;

end if
end for
end procedure

From Figure 1, it can be seen that the values for ST are low and almost constant.
The behavior is understandable as maximum tasks belong to P-I due to 75% utilization
and thus schedulable with LL-bound. Only few tasks are now in P-II when the task
set consists of 10 tasks and the number increases when the task set size increases but
again its insignificant increase. On the other hand, HA is better than RTI as a portion
of the task set is analyzed with LL-bound in HA while all tasks are tested with RTI,
which is pseudo-polynomial in nature. The same trends continue in Figures 2-4. For our
experiments, Figures 5 and 6 present the maximum load to RTI, HA and ST. Under 95%
and 100% utilization, more tasks will be placed in P-II with ST and the same for HA, and
hence all techniques take more time as compared to 75% system utilization. Interestingly,
the values in Figure 5 are on lower side, especially for RTI. All the techniques answer
the DM feasibility much faster in Figure 6 when CPU demand is 100%. The reason for
these lower values is that DMS is only optimal for static priority systems and fails when
system utilization increases. For higher utilizations, dynamic priority systems become
more appealing and promise schedulability of the Γ as long as utilization is less than
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Figure 1. Performance at 75 percent system utilization
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Figure 2. Performance at 80 percent system utilization
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Figure 3. Performance at 85 percent system utilization
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Figure 4. Performance at 90 percent system utilization
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Figure 5. Performance at 95 percent system utilization
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Figure 6. Performance at 100 percent system utilization
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100%, but those techniques are out of the scope of this work. With higher utilization,
the task system is very likely to be infeasible on single CPU. In Figure 6, the values go
even lower. Under 100%, ST and HA are better as some portion is tested with LL-bound
while few tasks are analyzed by exact condition, while RTA has to test all task sets with
exact condition starting from τ1 and so on in decreasing priority order. ST is better in the
sense that a good portion of tasks set is analyzed with LL-bound and it is very likely that
one few tasks are analyzed before the system is declared infeasible as per DM scheduling
algorithm.

5. Conclusion. In this work, we kept the timing constraints of the system intact while
dividing the system into two parts for faster feasibility analysis. We divided the real-
time system into two subsets such that the feasibility of the larger part is analyzed with
in-exact test. The first subset was sorted in ascending order of task utilization for accom-
modation maximum tasks. The other subset was tested with exact test. After analyzing
the feasibility of the task set, the deadline monotonic priority assignment was used for
scheduling the system on a uni-processor system. As a future research direction, the effect
of task set size as well as the role of higher guess values will be interesting to research
community.
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