
ICIC Express Letters
Part B: Applications ICIC International c⃝2018 ISSN 2185-2766
Volume 9, Number 8, August 2018 pp. 869–877

PRODUCTION SCHEDULING IN STEEL MANUFACTURING
WITH CUTTING AND PARALLEL OPERATIONS

Sujin Won1, Hyerim Bae1,∗ and Riska Asriana Sutrisnowati2

1Department of Industrial Engineering
Pusan National University

Busandaehak-ro 63beon-gil 2 (Jangjeon-dong), Geum-jeong-gu, Busan 46241, Korea
woen3150@pusan.ac.kr; ∗Corresponding author: hrbae@pusan.ac.kr

2Pusan National University Dong-Nam Grand ICT R&D Center
QB e-Centum, 90 Centum Jungang-ro Haeundae Gu, Busan 48059, Korea

riska@pusan.ac.kr

Received January 2018; accepted April 2018

Abstract. In a manufacturing process, there are many parts and some parts are divided
into other parts. In this paper, we devise a steel company’s schedule for cutting and
parallel operations using our proposed algorithm based on the biased random-key genetic
algorithm. All of the products of the steel industry are made of the same raw material
in the forms of huge steel coils. The final product is obtained as the result of machine-
sequence processing. Notably, the steel manufacturing process has unique features. A
coil is split into several sub coils and in the annealing process, coils are processed at the
same time. The annealing process in this sequence is subject to capacity constraints.
We adapted our genetic algorithm to solve this scheduling problem and demonstrated its
performance by testing it against real data from a steel company.
Keywords: Job-shop scheduling, Biased random-key genetic algorithm, Simultaneous,
Cutting operation, Parallel operation

1. Introduction. As customer needs have diversified, many manufacturers, seeking to
meet these demands, have begun to customize their products to meet specific customer
orders. Steel manufacturing is one such example. When a customer orders steel, he spec-
ifies (i.e., sets) its width, thickness, length, and hardness. Then, the steel-manufacturing
company makes that customer’s product to order via a given operations sequence. In this
problem, there are N jobs, for each of which there is a set of operations that must be fol-
lowed in a predefined sequence. This incurs the well-known NP-hard job-shop scheduling
problem [2].

Steel offers the following two key properties: first, from its original, huge steel-coil
form, it can be cut to size in the slitting and cold rolling mill processes; second, it can
be rendered malleable in the annealing process. The annealing process is not conducted
with only 1 coil but typically 2 or 3 coils. The number of simultaneous operating coils
is determined by the number of bases of a machine. Domain experts determine how
many coils are to be processed simultaneously in each base, which number can vary for
each operation schedule. Consequently, this creates challenges in the scheduling process.
Traditional job shop scheduling algorithms cannot handle our specific problems (e.g.,
slitting and simultaneous coils processing during annealing). Hence, in our model, as a
contribution, we try to incorporate dynamic processing by finding the optimal number of
coils processed simultaneously in each base and, eventually, to solve the steel-production
scheduling problem using our proposed genetic algorithm (GA) that is based on the biased
random-key GA.

DOI: 10.24507/icicelb.09.08.869

869



870 S. WON, H. BAE AND R. A. SUTRISNOWATI

This paper is organized as follows. Sections 2 and 3 present the related work and prob-
lem definition, respectively. Section 4 discusses the proposed algorithms, while Section
5 shows the experimental results. Finally, Section 6 draws conclusions and anticipates
future work.

2. Related Work.

2.1. Job-shop scheduling problem. Pinedo [4] defines the job-shop scheduling prob-
lem as a sequencing problem for a set of jobs in a set of machines that work in sequence
(following a predetermined route). The machines are always available and interruption of
jobs is not allowed. As stated in [2], the job-shop scheduling problem is an NP-hard prob-
lem. Researchers have introduced several ways to solve this problem either by heuristics
[6,8] or meta-heuristics [5,7] methods. One algorithm that is widely used is the GA [9]. In
[2], a survey of the related methods employed is provided. Researchers have experimented
with the GA by way of searching the initial solution [12,13], chromosome representation
[1], or operators [10,11].

2.2. Random-key genetic algorithm. The biased random-key GA was introduced by
Bean in 1994 specifically for the sequencing problem [1]. It uses random-keys (between
0 and 1) to avoid the many infeasible solutions found by traditional GA and to present
only good, feasible ones.

The general chromosome in the biased random-key GA can be seen in Figure 1. Every
gene (7, 8, 4, 2, 6, 1, 5, 3) has a random-key (0.49, 0.35, 0.67, 0.32, 0.51, 0.38, 0.19
and 0.22, respectively) and all of the GA operators are processed by those random-keys.
We can sort the random-keys in the following order: 0.19, 0.22, 0.32, 0.35, 0.38, 0.49,
0.51, 0.67. Afterwards, we can match all of the random-keys to genes from the smallest
random-key. The smallest random-key of this chromosome is 0.19. Since 0.19 is in the
7th position of this chromosome, the first gene is 7, and as 0.22 is the second smallest
random-key, its position is 8th; therefore, the second gene is 8. In this same way, random-
keys represent the real chromosome. When this algorithm operates the GA operators
(crossover, mutation), it uses only the random-keys.

Figure 1. Real chromosome of biased random-key genetic algorithm

The biased random-key GA is different for the selection operator. This can be seen
in Figure 2. Whereas the general random-key GA selects parents randomly in all of the
K-generation solutions, the biased random-key GA selects one parent in elite solutions
and then selects the other parents randomly in non-elite solutions.

In the problem tackled in this paper, one chromosome represents an entire schedule;
therefore, searching for optimal solutions takes a long time, and there are also many
infeasible solutions. So, we designed, based on the biased random-key GA, a GA that can
improve the performance of a scheduling algorithm.

3. Problem Definition. In this paper, we devise the schedule of a steel manufacturing
company. The company makes many kinds of products that differ by width, thickness,
hardness, and other properties. In such a real steel manufacturing operation, accordingly,
there are many kinds of processes, which are listed as follows: 1) Slitting (WS/SS):
Cutting steel coil to customized size; 2) Cold Rolling Mill (CR): Pressing steel coil to fit



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.8, 2018 871

Figure 2. Structure of biased random-key genetic algorithm [3]

Figure 3. Cutting operation

Figure 4. Parallel operation

customized thickness; 3) Pickling (PP): Oxidation treatment to clean surface of steel coil;
4) Annealing (AN): Heating and cooling steel coil to improve malleability; 5) Skin Pass
Mill (SP): Pressing steel coil by weak force to improve quality of products; 6) Packing
(PK): Packing of products; 7) Product (PR): Completion of products.

There are many kinds of products and each has a machine sequence. This is the same
as in the job-shop scheduling problem. However, in this problem, a coil is divided into
several parts and they are processed together (parallel operations) in an AN machine. In
this paper, we consider this kind of process as cutting and parallel operations. In the
cutting operation, one coil is divided into several coils (shown in Figure 3). These coils
are handled at the same time.

In the parallel operation, some of coils are merged into the same process. Even though
all of them are different, they are handled at the same time (as shown in Figure 4). In this
paper, the AN process is a parallel operation. In the AN process, if the AN machine has 3



872 S. WON, H. BAE AND R. A. SUTRISNOWATI

bases, 3 coils can be processed together. However, an AN machine also has its maximum
capacity, which limits the number of simultaneous coils. In this case, the processing time
is determined by which coil undergoes the longest processing time. Therefore, in this
problem, the makespan changes according to how the coils are merged. After the AN
process, each coil is processed according to its own machine sequence.

The problem of scheduling in a steel company can be stated as follows (Table 1 provides
the index of this problem). Let i (= 1, . . ., I) be an index of coils, j (= 1, . . ., J) be an
index of job sequences and k = (1, . . ., K) be an index of machines. NoAN is the number
of machines for the AN process. Note that indexes smaller than or equal to NoAN are
all used for AN machines. Index l is the simultaneous operation index. If l is 0, the coil
is processed alone; otherwise, (if l is not 0), it is processed with other coils that have the
same l index. WC is the maximum weight of coil.

Table 1. Notations

Index Description
yijkl Start time of coil i in the j-th sequence on machine k with l-th index
Cijkl Completion time of coil i in the j-th sequence on machine k with l-th index
Cmax Maximum completion time (makespan)
pijkl Processing time of coil i in the j-th sequence on machine k with l-th index

xii′k
1, if coil i′ is processed before coil i on machine k;
0, otherwise.

The decision variables are yijkl and xii′k. The problem model is

minimize Cmax (1)

s.t.

yij′kl − yijkl ≥ pijkl ∀(i, j, k, l) → (i, j ′, k, l) (2)

Cmax − yijkl ≥ pijkl ∀(i, j, k, l) (3)

Mxii′k + (yij′kl − yijkl) ≥ pijkl ∀(i, j, k, l), ∀(i′, j′, k, l) (4)

M (1 − xii′k) + (yijkl − yi′jkl) ≥ pi′jkl ∀(i, j, k, l), ∀(i′j′, k, l) (5)

yijkl = yi′j′kl ∀(i, j, k), ∀(i′, j′, k), l = 1, . . . , L (6)

CNkl ≤ N if k is ‘AN’, (k = 1, . . . , NoAN) (7)
n∑

i=1

s∑
j=1

m∑
k=1

Wijkl ≤ WC if k is ‘AN’, (k = 1, . . . , NoAN) (8)

yijkl ≥ 0 ∀(i, j, k, l) (9)

The objective function (1) is to minimize the makespan. Constraint (2) ensures that
all of the operations are processed in their proper sequence [4]. This is the same as the
job-shop scheduling problem. We must perform all operations according to constraint
(3). Constraints (4) and (5) determine the coil operation sequence for each machine.
Constraint (6) makes simultaneous operations start at the same time. The AN process
has two constraints: weight capacity and maximum number of simultaneous operations,
which are presented in constraints (7) and (8), respectively.

4. Proposed Algorithm. In this paper, we devise the schedule of a steel company that
has several jobs to perform in a predefined operations sequence. However, the AN machine
and slitting machine can be run at the same time. In the job-shop scheduling problem,
all operations cannot be processed at the same machines simultaneously. Therefore, the
proposed algorithm, designed based on the biased random-key genetic algorithm, considers



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.8, 2018 873

Figure 5. Overview of the proposed algorithm

Figure 6. Generation of sorted random-keys in ascending order

this among the constraints and does not make infeasible solutions in the GA operators
(Figure 5).

4.1. Initial solution. When the initial solution is generated, it must consider the order
of jobs. Generation of the initial solution proceeds in 3 steps:

Step 1. Generate sorted random-keys in ascending order by each coil (shown in Figure
6)

Step 2. Sort all random-keys in the chromosome
Step 3. Complete initial solutions by merging the random-key of Step 1 and the real

chromosome in Step 2.
Then, every initial solution is considered an operations sequence and thus is a feasible

solution.
In this problem, there are simultaneous operations. To treat them, we modify their

random-keys. If any of them are performed together, they share the same random-key.
After generating the initial solution, the parents are selected. This is the same as in the
biased random-key genetic algorithm. We calculate the fitness value of the initial solution
according to the makespan. We copy the elite set to the next generation; then, we select
the first parent in the elite set, and the other parent in the non-elite set.

4.2. Crossover. When we perform crossover, we also consider the sequence of jobs and
simultaneous operations. As this algorithm is based on the biased random-key genetic
algorithm, it uses only the random-key in the crossover operator. In Figure 7, there are 2
parents and 2 offsprings. The schedule consists of 3 coils and 15 operations. Each color is
the same coil which must be processed in ascending order. When we perform crossover,



874 S. WON, H. BAE AND R. A. SUTRISNOWATI

Figure 7. Crossover in the proposed algorithm

Figure 8. Mutation in the proposed algorithm

we compare each of the parents of the random-key at the same position. In Figure 7, the
first random-key gene of parent 1 is 0.1921, and the first random-key gene of parent 2 is
0.0277. As 0.0277 is smaller than 0.1921, the first random-key gene of offspring 1 is 0.0277
and the first random-key gene of offspring 2 is 0.1921. The other genes in the offspring
are generated in the same way.

4.3. Mutation. In the GA, mutation is necessary in order to avoid the local optima. In
this algorithm, we design mutations according to the operations sequence and simultane-
ous operations. First, we select the chromosome to mutate with probability. Second, we
select the gene to mutate. Third, we change the random-key of the selected gene within
the operations sequence. In Figure 8, we select the 6th gene to mutate. Then, we must
consider the random-keys of the 5th gene (0.3530) and the 7th gene (0.9258) to keep the
operations sequence. Note that the random-key of the 6th gene must be larger than that
of the 5th gene and smaller than that of the 7th gene. Therefore, it is changed to 0.4289.
The original random-key of the 6th gene (0.4493) is larger than the random-key of the
3rd gene (0.4357); however, the changed random-key (0.4289) is smaller. Then, the real
chromosome value is changed.

5. Experiment. The proposed algorithm was implemented on an Intel R⃝ CoreTM i7-
4790K 4.00Hz CPU (16GB RAM; Matlab R2016a). In our experiment, we tested different
values of the parameters of this algorithm and obtained the following parameters: 1)
population size: 30; 2) iteration limit: 500; 3) rate of crossover and mutation: 40% and
40%, respectively; 4) mutation probability: 60%.

Using a small size problem as shown in Gantt chart in Figure 9 and the respective
encoded chromosome in Table 2, e.g., 6 coils and 15 operations, we compare the proposed
GA, the precedence order crossover (POX) GA and the LP model (refer to Table 3). It
shows that the makespan of all algorithms is 40, but that the processing of the proposed
GA is less than that of the precedence order crossover (POX) GA and the mathematical
model. Here, we are sure that our proposed method is advantageous since we can obtain
an optimal solution for small-size data (or a nearly optimal solution for large size data)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.8, 2018 875

Figure 9. Result of simple example

Table 2. Result of simple example in chromosome

Coil 4 6 1 4 6 1 2 4 5 1 4 2 3 6 2

Operation 8 13 1 9 14 2 4 10 12 3 11 5 7 15 6

Machine 2 2 1 1 4 2 2 2 2 3 4 2 2 3 4

Random
-key

0.1568 0.4983 0.7862 0.4983 0.8427 0.9574 0.8427 0.1086 0.1568 0.5222 0.7874 0.5222 0.1086 0.2248 0.8753

Table 3. Comparison result of simple example

Proposed GA POX GA LP model
Processing time (sec) 0.85 1.19 41.35

Makespan 40 40 40

Figure 10. Job processing time comparison for the proposed GA and POX GA

in significantly less time. Figure 10 shows a further experiment comparing the POX GA
and our proposed GA for an increasing number of jobs; the results consistently show that
our proposed GA spent less time than the POX GA.

Next, we tested real data from the steel company. First, we tested data for 3 days
(2016-01-02 00:00:00-2016-01-04 23:56:00): 245 products were produced over the course
of 492 operations, as shown in Figure 11. Our algorithm took 300.4059 seconds to schedule
the 3 days of real data. Because the makespan was changed according to the combination
of coils in the AN, the average makespan oscillated up and down. The operation time
for the real data was 4,316 minutes; however, the minimum makespan of our algorithm
was 2,748 minutes, representing a significant reduction of about 36.3%. This indicated
that our algorithm can improve the productivity of steel manufacturing with effective
scheduling.



876 S. WON, H. BAE AND R. A. SUTRISNOWATI

Figure 11. Average and minimum makespans of 492 operations in 3 days

6. Conclusions. As discussed in this paper, we designed a genetic algorithm based on
the biased random-key genetic algorithm for the job-shop scheduling problem with cutting
and parallel operations. In our algorithm, there were no infeasible solutions. The results
of our computational study showed that our algorithm can find the optimal solution
for a small-size problem more effectively than real data. The following are some of the
goals of our upcoming research: forecasting of processing time to improve the accuracy of
scheduling; comparison with other genetic algorithms for the same problem (cutting and
parallel operations); consideration of other fitness functions for calculation of the fitness
values of individuals and analysis of various problem sizes in testing the performance of
our algorithm.

Acknowledgment. This research was partly supported by the MSIP (Ministry of Sci-
ence, ICT and Future Planning), Korea, under the Grand Information Technology Re-
search Center support program (IITP-2017-2016-0-00318) supervised by the IITP (Insti-
tute for Information & Communications Technology Promotion); additional support was
received in the form of a National Research Foundation of Korea (NRF) grant funded by
the Korean government (MEST) (No. NRF-2015R1D1A1A09061331).

REFERENCES

[1] J. C. Bean, Genetic algorithms and random keys for sequencing and optimization, ORSA Journal
on Computing, vol.6, no.2, pp.154-160, 1994.

[2] A. Jain and S. Meeran, Deterministic job-shop scheduling: Past, present and future, European
Journal of Operational Research, vol.113, pp.390-434, 1999.

[3] J. F. Gonçalves and M. G. C. Resende, Biased random-key genetic algorithms for combinatorial
optimization, Journal of Heuristics, vol.17, pp.487-525, 2011.

[4] M. Pinedo, Scheduling, Springer, 2015.
[5] S. Knopp, S. Dauzère-Pérès and C. Yugma, A batch-oblivious approach for complex job-shop sched-

uling problems, European Journal of Operational Research, pp.50-62, 2017.
[6] A. Jamili, Robust job shop scheduling problem: Mathematical models, exact and heuristics algo-

rithms, Experts Systems with Applications, pp.341-350, 2016.
[7] R. Menćıa, M. R. Sierra, C. Menćıa and R. Varela, Memetic algorithms for the job shop scheduling

problem with operators, Applied Soft Computing, pp.94-105, 2015.



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.8, 2018 877

[8] I. Assaf, M. Chen and J. Katzberg, Steel production schedule generation, International Journal of
Production Research, pp.467-477, 1997.

[9] M. Kurdi, An effective new island model genetic algorithm for job shop scheduling problem, Com-
puters & Operations Research, pp.132-142, 2016.

[10] M. Watanabe, K. Ida and M. Gen, A genetic algorithm with modified crossover operator and search
area adaptation for the job-shop scheduling problem, Computer & Industrial Engineering, pp.743-
752, 2005.

[11] M. Amirghasemi and R. Zamani, An effective asexual genetic algorithm for solving the job shop
scheduling problem, Computers & Industrial Engineering, pp.123-138, 2015.

[12] J. Li, Y. Huang and X. Niu, A branch population genetic algorithm for dual-resource constrained
job shop scheduling problem, Computers & Industrial Engineering, pp.113-131, 2016.

[13] Y. Liu, Different initial solution generators in genetic algorithms for solving the probabilistic traveling
salesman problem, Applied Mathematics & Computation, vol.216, no.1, pp.125-137, 2010.


