
ICIC Express Letters
Part B: Applications ICIC International c⃝2018 ISSN 2185-2766
Volume 9, Number 8, August 2018 pp. 805–811

RESEARCH ON CODE KNOWLEDGE BASE
ORIENTED TO SOFTWARE GENERATION

Aijing Jia, Yao Liu∗ and Yi Huang

Institute of Scientific and Technical Information of China
No. 15, Fuxing Road, Haidian District, Beijing 100038, P. R. China

∗Corresponding author: liuy@istic.ac.cn

Received January 2018; accepted April 2018

Abstract. In the era of Internet, automatic code generation is a kind of technical
means commonly used in software reuse, which can greatly improve the efficiency of
software production. Based on the study of the rules and methods of code marking,
this paper uses natural language processing technology and machine learning method to
reconstruct various types of code. On the basis of constructing code ontology, semantic
annotation technology is used to annotate the code, to archive a structured and semantic
code knowledge base. Experiments show that the code knowledge base can effectively
improve the efficiency of software development.
Keywords: Software generation, Code knowledge base, Semantic annotation, Natural
language processing

1. Introduction. Into the Internet era, all kinds of scientific research are inseparable
from a variety of software tools, and the preparation of the software requires a lot of code
support, and the code occupies a very important position in the computer technology.
However, the code is only tools, and we should not spend a lot of time in the preparation
of the code. Code generation is a common means of the software reuse, and it can
improve the efficiency of software production largely. Similar to the text generation, the
code generation also needs a lot of corpus, and building a complete and practical code
knowledge base is particularly important. Code knowledge base stored a large number of
automatic or semi-automatic markup of the code corpus, using these corpora, according
to the rules written code, code can be generated.

There is still little research on code knowledge base at present. In the generation of
code, the research of the domestic and foreign mainly focuses on the specific programming
language, framework and mode, using the UML based model [1], design pattern based [2],
and the template engine based [3] and other methods, code generation customization and
versatility is weak. Code hosting platform such as GitHub, Bitbucket, coding, CSDN, and
code cloud, cannot structure storage code, also cannot represent the code on the next bit,
the relationship between the code, so there is a certain distance on the code generation. In
the construction of knowledge base, the Institute of Science and Technology Information of
China has carried out research on key technologies including semantic reptile [4], ontology
automatic construction [5], semantic annotation [6,7]. In view of this, this paper presents
a code-generation code knowledge base for the construction method.

At present, the research of the software generated code knowledge base is less. This
paper studies the construction of the code base of software generation, provides the corpus
support for the later software generation, and improves the production efficiency of the
software. The code in the code base is extracted, marked and so on, and the method of
natural language processing and machine learning is used to reconstruct all kinds of code

DOI: 10.24507/icicelb.09.08.805

805

806 A. JIA, Y. LIU AND Y. HUANG

and realize the structure and semantics of the code resources, which has achieved good
results.

2. Design Idea. The basic idea of this paper is to study the rules and methods of the
code, and reconstruct and utilize all kinds of codes by ontology construction technology,
achieving the structured and semantic synchronization of the code resources, combining
the code marking rules to mark the code on the basis of constructing the code system
framework, providing predictive support for code generation. The quantity and quality of
the code in the code knowledge base will directly affect the quality of the code knowledge
base. The accuracy of the code label directly affects the quality of the code generation.
The main source is the source code and the software code of the CD. We assimilate the
idea of automation into the design process of the code knowledge base, including the
existing code of the automatic access, code cleaning and processing, automatic labeling
of the code and other aspects. The construction of the code knowledge base is shown in
the following figure.

Figure 1. The process of the code knowledge base construction

After learning the code in the “21-day learning java 6” version 5, “Java language pro-
gramming” and “Java programming thought: fourth edition”, summarizing the elements
of the Java code include the data type, the identifier, Keywords, operators, comments, in
theory, Java code is the different combinations of these five elements. It forms the various
layers of Java code, including variables, arrays, statements, methods, classes, objects, and
interfaces, as shown in Figure 2. Analysis of these elements can reveal the regularity
between the codes, build code model and lay the bedding for further research.

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.8, 2018 807

Figure 2. Code composition

3. Research on Key Technology.

3.1. Code tagging rules building. It is helpful to standardize the code software ob-
tained from different sources, and also provide the basis for the analysis and annotation
of the code, which provides structural support for the construction of code ontology. By
summing up the various keywords and the related concepts, we divided the java code
into 8 top-categories, objects, modifiers, variables, statements, comments, data types,
behavior and operators.

The secondary classification of the object is the class. The class contains four classifi-
cations: String, array, VO, and set. The array contains two classifications: the int array
and the String array. The set includes four classifications: List, ArrayList, HashMap and
HashSet.

The modifiers include the public modifiers, the class modifiers, the member variable
modifiers, and the method modifiers. The public modifier contains public, private, pro-
tected, friendly, and static modifiers, but we can only use one of them when the class,
method or the variables are modified. The modifiers with static can modify static vari-
ables, methods, and classes, the modifier without static can modify general methods. The
abstract modifier can modify the classes, the transient and volatile modifiers can modify
the abstract classes and the member variable. The synchronized and native modifiers can
modify the method. The variables contain constants, expressed separately with different
identifiers.

The secondary classification of the statements includes assignment statements, flow
control statements, and interrupt control statements. The flow control statement includes
two classifications: the conditional statement and the loop statement. The conditional
statement includes the if conditional statement and the if else conditional statement. The
loop statement includes a while loop, a for loop, a switch statement, a case statement,
and a for each statement. The interrupt control statements include break statements,
return statements and continue statements.

Comments include three types, namely “//”, “/ *” and “/ **”.
The data types include integer, floating-point, char, and Boolean. Integer is divided

into four classifications: int type, short type, long type and byte type. Floating point
includes float and double. The char type includes several special characters, “/b”, “/t”,
“/n”, “r”, and “/u”.

The behavior only considers the object behavior, including methods and interfaces.
The main method is the entrance of the program, so we labeled the main method.

808 A. JIA, Y. LIU AND Y. HUANG

Table 1. The rules of code annotation

Operators include arithmetic operators, relational operators, bitwise operators, logical
operators, mathematical functions, and expressions. The arithmetic operator contains
the addition, subtraction, multiplication, division, modulo operators, and the increment
and decrement operators. Relational operators contain equal to, not equal, greater than,
greater than or equal to, less than and less than equal to six three categories. The bitwise
operators include four classifications: and, or, not, xor. Logical operators include three
classifications: and, or, not.

We make the following code according to the preparation of java code.
Usually we use the first three letters of the word as the keyword, for example, the

integer variables int are labeled as int, the short integer variables are labeled as sho. We
relabeled some repeated keywords, using the first 4 letters or the first 3 letters of the first
word and the first one letter of the second word as the keyword, for example, the hashMap
is labeled as HasM, the HashSet is labeled as HasS. The for is labeled as for, the for each
is labeled as fore. We labeled the four letter words as itself, such as main. In addition,
public, private, protected and friendly 4 modifiers cannot appear in a class or method or
variable, so we labeled them as mod1, mod2, mod3 and mod4, and set the four variables
can only appear in one in each class, method or variable of the modifier.

Once you have established the above code tagging rules, you can automate the annota-
tion of the acquired code. Analyzing the results obtained by the label and code structure,

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.8, 2018 809

which can construct a simple code ontology, describe the upper and lower relations be-
tween the elements in the code, attribute relations, etc., can provide important structural
guidance for code generation.

3.2. Code knowledge base construction. The main function modules of the code
repository include model building, code addition, code editing and element editing mod-
ules.

3.2.1. Model building. Model building is the framework of code knowledge base. The
model building module is based on the first-level classification of the code marking rules
and the logical relationship of the programming language, constructs the code system
framework, describes the structure of the code classification at all levels and the relation-
ship between them.

3.2.2. Code add. The code add module is a module that adds the new code to the knowl-
edge base. For a new code, you need to decode the code and add it to the repository.
The process of adding modules is that, first of all, you need to use a variety of static code
review tool to review the new code to ensure that it is running correctly, and then label
and deconstruction of the code in accordance with the structure. Finally mark function
and then further deconstruct the code to the element granularity and storage.

3.2.3. Code edit. The code in the code knowledge base maybe needs to be edited for
some reasons, for example, the writer decided to optimize the code or the code is failure.
We can edit the code. After editing the code they need to add the process through the
code. First, review whether the edited code can run, whether it conforms to the code
specification, and then deconstruct it and store.

3.2.4. Element edit. The code is constantly evolving, the elements of the description of
the code is increasing. In the construction of the knowledge base, if no corresponding
elements or an element of the repeated phenomenon, you need to edit the elements. That
is, edit the elements of the description of the code in order to describe the code better.

4. Implementation and Application. Based on the structure of the programming
language and the logical relationship, the project team constructs the framework of the
code system. The code ontology has 67 concepts and 12 attributes. It includes most of
the Java 49 keywords, plus some non-keywords but in the Java code has an important
role in the concept. The concept is divided into two categories: objects and modifiers.
Objects in the object include: Object, class, String, array, int [], String [], Collection,
ListList, LinkedList, Set, HashSet, LinkedHashSet, SortedSet, TreeSet, Map, SortedMap,
TreeMap, HashMap, interface. The modifiers include 47 concepts, as shown in Table 2.

Using the above 67 concepts, it can represent most of the code types in Java. There
are 12 description concepts of the property. The 6 attributes of the objects are nickname,
English name, description, public, private and protected. There are six attributes of the
modifier, including: nickname, English name, definition, public, private and protected.

Using the weather class in the “21 days learning of java 6 (fifth editon)” as an example,
the main function of this class is to automatically determine whether the input data is in
degrees Celsius or Fahrenheit and converted to another temperature representation.

Weather class is divided into four methods, namely main (String args []), fToC (int
fahIn), cToF (int celIn) and getType (String temp []), where main (String args []), Main
(String args []) is as the main method. The function of this method is to read the data
entered by the console and initialize the Scanner object, and call each method in order to
complete the conversion between degrees Celsius and Fahrenheit. First call the getType
(String temp []) method, pass the variables passed by the console into the getType (String
temp []) method, and determine whether the variable is Celsius or Fahrenheit. If it is a

810 A. JIA, Y. LIU AND Y. HUANG

Table 2. The concept of 47 modifiers in the ontology

implements switch short
abstract case long

new break byte
extends continue float

final return double
static default boolean

strictfp instanceof char
native catch super

synchronized finally this
transient throw void
volatile throws goto

if try const
else assert main
for import out
do package

while int

Celsius temperature, call the cToF (int celIn) method to convert the Celsius temperature
to Fahrenheit, return to cel, and print the variable. If the temperature is Fahrenheit, call
the fToC (int fahIn) method to convert the Fahrenheit temperature to Celsius, return fah,
and print the variable.

The system uses the code architecture framework to code the getType (String temp [])
method code and label the results.

Analyzed by the system, save the java file to the set java entity class List <CodeB-ean>
and save the parsing results to the mongodb database. The final system builds the index,
and the user can retrieve the relevant code, such as “get type” or “get type” as shown in
the “Get type method” and “input box”. The search results are shown in Figure 3.

5. Conclusion. Aiming at the problem of code generation at this stage, this paper pro-
poses a method of constructing code knowledge base for software generation. By studying
the rules and methods of code tagging, this paper uses natural language processing tech-
nology and machine learning method to reconstruct and utilize all kinds of codes. On the
basis of constructing the code system framework, combine the code marking rules and
semantic annotation technology to semantic annotation code, to achieve the structure of
the code resources, semantic synchronization. Experiments show that the code knowledge

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.8, 2018 811

Figure 3. Retrieve “getType”

base constructed by this method can improve the efficiency of software development, and
also provide some useful reference for the customization of code generation.

This paper is only a preliminary study of software generation. After the construction
of the code knowledge base is completed, the code model and software logic are set up,
and then the software is used to build the code and the software logic. Logic knows the
code model to generate the software that has reached the purpose of software generation.

REFERENCES

[1] X. Wang and H. Qian, Research on automatically generating C++ code from UML class and sequence
diagrams, Computer Applications and Software, vol.30, no.1, pp.190-195, 2013.

[2] L. Ding and S. Xu, Automatic generation of java code based on SSH framework, Computer Appli-
cations and Software, vol.23, no.9, pp.72-77, 2014.

[3] D. Kong, F. Luo, W. Lin, L. Ge and M. Liu, Research on a velocity-based automatic code generation
technology, Computer Applications and Software, vol.31, no.10, pp.20-23, 2014.

[4] X. Gong and Y. Liu, Research on construction of integrated semantic crawler, ICIC Express Letters,
Part B: Applications, vol.7, no.7, pp.1591-1598, 2016.

[5] Y. Liu, X. Chen, Z. Sui, Y. Hu and Q. Zhao, Research on semantic method of library resources’
organizing, ICIC Express Letters, vol.5, no.4(A), pp.1011-1017, 2011.

[6] Y. Liu, H. Shi, D. Zheng and Y. Huang, Study on semantic annotation for professional literature,
ICIC Express Letters, Part B: Applications, vol.5, no.5, pp.1383-1389, 2014.

[7] Y. Liu, Z. Zhang and Y. Huang, Research and development of semantic annotation platform for
scientific literature, ICIC Express Letters, vol.10, no.7, pp.1787-1794, 2016.

[8] Y. Liu, Y. Huang and Y. Wang, Research on the key technologies of Pyrios knowledge service
platform, ICIC Express Letters, Part B: Applications, vol.6, no.5, pp.1323-1328, 2015.

