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Abstract. In data-driven prognostics and health management (PHM) system, the fea-
tures extracted from the data always have a high dimension. However, the high dimen-
sion data has many redundant parts and it is difficult to calculate. Therefore, feature
dimension reduction is needed after feature extraction. Most researches use the princi-
pal component analysis (PCA) method, the kernel principal component analysis (KPCA)
method, and the orthogonal locality preserving projection (OLPP) method for dimension
reduction. However, these methods could not be suitable for solving problems of classifica-
tion tasks, and thus it should be improved in dimension reduction performance and fault
diagnosis accuracy. In this paper, the uncorrelated linear discriminant analysis (ULDA)
method, which can explicitly extract a set of statistically uncorrelated features, is used to
reduce the data dimension of the data-driven PHM system. The comparison results show
the ULDA dimension reduction method has the highest correct rate in these algorithms.
Keywords: Data dimension reduction, Data-driven PHM, Uncorrelated linear discrim-
inant analysis

1. Introduction. Prognostics and health management (PHM) technology always uses as
few sensors as possible to collect various performance information of the system, and uses
intelligent algorithm (such as fuzzy logic, neural networks, data fusion, expert systems,
and physical model) to detect the system health status, and can predict the future fail-
ures and take a series of condition-based maintenance measures according to the analysis
results, so it has been widely used in aeronautics, astronautics, automobile, and energy
industry. In general, the PHM system has been divided into three kinds: the physical-
model PHM system, the data-driven PHM system and the knowledge-based PHM sys-
tem. The physical-model PHM system needs to establish a physical model to describe the
study object [1]. It is hard for complicated system, so it only suits simple system. The
knowledge-based PHM system needs lots of knowledges to establish a knowledge base [2].
The data-driven PHM system studies the system state from history data, establishes an
analytic method according to original monitoring data and predicts future behavior of
system [3]. It has a higher correct rate and suits more complicated systems.

The data-driven PHM system usually consists of signal processing, fault diagnosis, fault
prediction and health management, etc., and the framework is shown as Figure 1. The
main works of signal processing include the signal acquisition, feature extraction and
feature dimension reduction. In data processing step, the extracted features always have
a high dimension and are complicated to calculate; thus, feature dimension reduction is
needed.
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Figure 1. The framework of a data-driven PHM system

Traditional dimension reduction methods are the principal component analysis (PCA)
method [4], the kernel principal component analysis (KPCA) method [5] and the orthog-
onal locality preserving projection (OLPP) method [6], etc. However, the fault diagnosis
correct rates of these algorithms are relatively low. To improve dimension reduction per-
formance, some adapted algorithms are proposed based on these algorithms [7-11]. For
example, the kernel entropy component analysis (KECA) algorithm is proposed based on
the PCA and KPCA algorithms, and it shows better performance in dimension reduction
when compared with PCA algorithm and KPCA algorithm [12]. The piecewise linear di-
mension reduction (PLDR) technique is proposed to overcome the restriction of linearity
at relatively low cost [13].

However, because these above methods may result in the loss of the optimal features
in some complicated situations, and the fault diagnosis performance of above methods
cannot meet the requirements of some important systems. In this paper, the uncorrelated
linear discriminant analysis (ULDA) method is used for dimension reduction. The driven
data of PHM are extracted from time domain, frequency domain, wavelet package or
combined domain. The testing parts are used to test the fault diagnosis performance
based on PCA, KPCA, ULDA and OLPP algorithms. Compared with other algorithms,
the ULDA method has higher fault diagnosis correct rates and better dimension reduction
results.

The remainder of this paper is organized as follows. Section 2 presents the ideas of
the standard linear discriminant analysis (SLDA) method and the adapted uncorrelated
linear discriminant analysis (ULDA) algorithm. Section 3 compares different algorithms
in different domain features and training-testing ratios. Section 4 concludes the work.

2. Feature Dimension. In data processing step, the obtained data always has been
analyzed by using the statistical methods, the Fourier transform method and the wavelet
transform method, so the features can include time domain, frequency domain and wavelet
domain. In this paper, the extracted feature parameters are divided into seven sets,
that is, time domain feature parameter set, frequency domain characteristic parameter
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set, wavelet domain characteristic parameter set, combined characteristic parameter set
of time domain and frequency domain, combined characteristic parameter set of time
domain and wavelet domain, combined characteristic parameter set of frequency domain
and wavelet domain, combined characteristic parameter set of time domain, frequency
domain and wavelet domain. These characteristic parameter sets all have a big dimension,
so they need a simplification algorithm. The uncorrelated linear discriminant analysis
(ULDA) method is used to reduce the data dimension of the driving data. The ULDA
algorithm is adapted from the linear discriminant analysis (LDA) algorithm.

2.1. Linear discriminant analysis. Linear discriminant analysis (LDA) is a supervised
learning method and the discriminant functions in the LDA method are all linear func-
tions. LDA method finds the optimal discriminant vectors or the projection axes based
on the classification criteria, such as Fisher criterion. The sample data is projected on the
optimal discriminant vector. Then the data of the same kind will be concentrated while
the data of different kinds will be scattered. And it makes the intra-class discretization
degree and the inter-class discretization ratio reach the maximum value. Therefore, based
on the Fisher criterion, the method is to calculate the optimal matrix of the following
formula.

J(Wopt) =

∣∣W T SbW
∣∣

|W T SwW |
(1)

where Wopt is the optimal matrix, Sb is the inter-class discretization matrix, and Sw is the
intra-class discretization matrix.

Define the detection matrix as X = (xij) ∈ Rn×p, where n and p represent the dimen-
sions of sample parameters and variable parameters. Define the cT
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where the Xi represents the i-th sample matrix, n represents the number of the i-th
sample, and e represents an all-one matrix. Then discretization matrixes are:

Sw = HT
wHw, Sb = HT

b Hb, St = HT
t Ht (3)

where St represents the total discretization matrix of detection sample.
Calculate the optimal matrix by Lagrange multiplier method, define W T SwW = a ̸= 0,

and then the optimal function becomes:

L(W,λ) = W T SbW − λ
(
W T SwW − a

)
(4)

The partial derivative of W is:

∂L(W,λ)

∂W
= SbW − λSw (5)

Set ∂L(W,λ)
∂W

= 0, then SbW = λSw, and W = S−1
w Sb. The optimal matrix is the eigenvector

corresponding to the former d maximum eigenvalue. However, if the data dimension is
very big, the inter-class discretization matrix is singular. So the LDA method cannot be
used to reduce the dimension of the high dimension data.

2.2. Uncorrelated linear discriminant analysis. The uncorrelated linear discrimi-
nant analysis (ULDA) method is improved by the LDA method. The feature vector of
ULDA method is irrelevant, if the former r vectors are {g1, g2, . . . , gr}, then the r + 1
vector gr+1 obeys the rule:

gT
r+1Stgk = 0 (k = 1, 2, . . . , r) (6)
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The ULDA method overcomes the shortage of LDA method, and it fits high dimension
situations. The characteristic matrix transformed by the orthogonal discriminant vector
of the detection sample data is linearly independent and does not have any redundant
features. The conversion matrix meets:

GULDA = arg
(
max

(
trace

(
GT StG

)−1
)

GT SbG
) (

G ∈ Rm×l, GT StG = Il

)
(7)

The steps of ULDA method are as follows.
Step1: Calculate the column space U of matrix St: do the singular value decomposition

of Ht, make Ht = U1ΛtV
T , where U1 ∈ Rm×r, Λt ∈ Rr×r are nonzero diagonal matrixes

arranged in descending order, V ∈ Rr×r is an orthogonal matrix, and r = rank(Ht).
Step2: Whitening processing. Set W = U1Λ

−1
t , and then the discrete matrix S̃t and S̃b

are:

S̃t = W T StW = W T HtH
T
t W = Λ−1

t UT
1 U1ΛtU

T
1 U1Λ

−1
t = Ir (8)

S̃b = W T HbH
T
b W (9)

Step3: Do the singular value decomposition of the matrix W T Hb. Set W T Hb = MΛbV
T ,

and the corresponding vectors of the largest l non-zero singular values in M are selected
to make the matrix M1 by column.

The dimension reduction steps of ULDA method are as Figure 2, where i represents
the number of feature parameters, k is the number of class states, N is total number of
feature parameters, M represents the total number of class states, a is the sample data
minus the sample mean, and b represents the number of samples when a is under the
secondary root.

Figure 2. The detailed steps of ULDA method

3. Feature Dimension Algorithm Comparison. To verify the superiority of the
ULDA method in dimension reduction, the experiments are compared with PCA, KPCA
and OLPP algorithms. The fault diagnosis results of different algorithms are as Figure
3, where cross point set represents the normal state, circle point set represents the inner
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(a) PCA algorithm (b) KPCA algorithm

(c) OLPP algorithm (d) ULDA algorithm

Figure 3. Feature reduction dimension scatter plot

ring fault state, triangle point set represents the rolling failure state, and star point set
represents the outer ring fault state.

Studying the features of time domain, frequency domain, wavelet domain feature data
sets, the ratio of the training data and the detection data is 3:7, 4:6, 5:5 and 6:4. The
fault diagnosis results are shown in Tables 1-4, where TD is time domain, FD is frequency
domain and WD is wavelet domain.

From the tables, the ULDA algorithm has higher diagnosis results than other algorithms
in different ratios. The ratio of 5:5 has higher correct rates than other ratios. The highest
correct rate is 99.80±0.16%, when the driven data is the combined features from time
domain, frequency domain and wavelet package.

4. Conclusions. In this paper, a feature dimension reduction method for data-driven
PHM system based on ULDA algorithm is proposed. The driven data are features ex-
tracted in time domain, frequency domain and wavelet domain. The ULDA algorithm
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Table 1. The TD and FD diagnosis results (%)

Domain
Train-test

ratio
PCA KPCA ULDA OLPP

Time domain

3:7 91.36±4.46 62.30±28.23 97.82±0.79 92.91±1.56
4:6 90.29±6.63 77.83±15.83 98.15±0.65 92.98±1.13
5:5 93.48±2.14 81.08±19.60 98.40±0.43 93.95±1.61
6:4 90.81±4.96 83.09±15.35 98.84±0.43 93.90±1.66

Frequency
domain

3:7 95.21±1.64 80.55±13.33 99.11±0.32 93.89±1.09
4:6 94.98±1.07 79.40±15.59 99.14±0.58 95.35±0.69
5:5 95.93±0.71 84.95±9.00 99.55±0.25 94.00±2.05
6:4 95.47±0.86 76.56±18.81 99.53±0.31 94.41±1.09

Table 2. The WD and TDFD diagnosis results (%)

Domain
Train-test

ratio
PCA KPCA ULDA OLPP

Wavelet
domain

3:7 90.98±0.85 67.94±15.23 90.77±1.20 88.09±3.63
4:6 90.27±1.27 67.83±16.64 90.71±0.98 89.17±1.75
5:5 91.18±0.83 71.60±10.95 91.38±0.85 90.83±0.61
6:4 90.94±0.88 78.91±7.93 91.06±1.06 91.53±1.10

Time domain
& Frequency

domain

3:7 97.96±0.69 93.52±6.30 99.60±0.16 94.41±1.90
4:6 97.73±0.73 92.50±8.13 90.69±1.02 95.54±0.88
5:5 97.35±0.91 87.63±14.53 99.71±0.05 95.65±1.23
6:4 97.28±0.72 98.66±0.51 99.37±0.10 95.69±1.08

Table 3. The TD-WP and FD-WD diagnosis results (%)

Domain Train-test ratio PCA KPCA ULDA OLPP

Time domain
& Wavelet

domain

3:7 97.05±0.93 93.48±4.68 99.36±0.25 91.98±2.52
4:6 97.79±0.50 77.08±11.08 98.96±0.50 94.02±2.22
5:5 97.68±0.54 83.68±10.36 99.52±0.23 95.30±1.51
6:4 98.38±0.56 90.00±9.38 99.75±0.20 96.19±1.76

Frequency
domain

& Wavelet
domain

3:7 88.39±1.93 72.29±16.94 99.43±0.06 95.07±0.91
4:6 88.63±1.08 55.42±19.63 99.50±0.21 96.44±1.61
5:5 87.33±2.00 70.48±18.33 99.70±0.10 93.80±2.00
6:4 88.66±1.45 55.91±32.72 99.23±0.13 93.78±1.66

Table 4. The TD-FD-WD diagnosis results (%)

Domain Method Ratio Correct rate Method Ratio Correct rate

Time domain
& Frequency
domain &

Wavelet domain

PCA

3:7 98.73±0.74

ULDA

3:7 99.60±0.23
4:6 98.44±0.79 4:6 99.73±0.14
5:5 98.23±0.73 5:5 99.80±0.16
6:4 98.81±0.63 6:4 99.75±0.23

KPCA

3:7 97.66±0.77

OLPP

3:7 94.73±2.05
4:6 94.23±6.97 4:6 92.65±3.46
5:5 97.28±1.66 5:5 95.05±1.25
6:4 99.00±0.39 6:4 96.13±1.11

is compared with PCA, KPCA and OLPP algorithms in different domains and training-
testing ratios. The results show the highest correct rate occurs when the training-testing
ratio is 5:5 and the ULDA algorithm is used.
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