
ICIC Express Letters
Part B: Applications ICIC International c⃝2018 ISSN 2185-2766
Volume 9, Number 7, July 2018 pp. 665–672

SIMULATION OF PLATELET AGGREGATION ON THE WALL
OF ORIFICE FLOW BY DISSIPATIVE PARTICLE DYNAMICS

ACCELERATED BY OPENMP

Yingming Yi and Masaaki Tamagawa

Department of Biological Functions Engineering
Graduate School of Life Science and Systems Engineering

Kyushu Institute of Technology
Kitakyushu, Fukuoka 808-0196, Japan

yi-yingming@edu.life.kyutech.ac.jp

Received December 2017; accepted March 2018

Abstract. Platelet transport and aggregation are two important steps in the formation
of white thrombus. Platelet transport has been investigated by finite difference method
(FDM) in our previous research. However, FDM cannot simulate platelet aggregation.
Other numerical methods, such as dissipative particle dynamics (DPD), should be used
to simulate platelet aggregation. And DPD can be combined with FDM to have a com-
plete analysis of the formation of white thrombus. However, vast computational time in
DPD system is needed if particle number is big. To decrease this vast computational time
and have a balance with FDM, parallel computation is an effective method. This paper
describes the parallelization of DPD by OpenMP. For parallelization performance, it is
found that the computational time is efficiently shortened by OpenMP. After the confir-
mation of the high performance by OpenMP, platelet aggregations with different initial
platelet numbers are simulated in orifice flow. It is concluded that recirculation area and
reattachment point have higher probability of platelet aggregation.
Keywords: DPD, OpenMP, Parallel performance, Platelet aggregation

1. Introduction. It is usual that white thrombus happens in artificial blood pumps. The
main composition of white thrombus is platelet. Platelet transport and aggregation are the
two main steps in thrombus formation. Platelet transport has been investigated by finite
difference method (FDM) in our previous research [1]. However, FDM cannot simulate
platelet aggregation. Other numerical methods, such as dissipative particle dynamics
(DPD), should be used to simulate platelet aggregation. And DPD can be combined with
FDM to have a complete analysis of the formation of white thrombus. Compared with
FDM, much larger computational time is needed by DPD. In order to have a balance of the
computational time with FDM, Open Multi-Processing (OpenMP) is used to parallelize
the DPD for acceleration.

A. Tosenberger et al. [2] used dissipative particle dynamics method to model different
stages of platelet adhesion process. And their simulation results are in a good agreement
with the experimental results. N. Filipovic et al. [3] suggested that dissipative particle
dynamics offers a promising approach to the modelling of platelet-mediated thrombosis.
Pivkin and Richardson [4] used DPD to investigate the effect of the presence of red blood
cells on platelet aggregation. However, time consumption is one disadvantage of DPD.
N. Zhang et al. [5] completed the simulation of 1-ms multi-scale phenomena of flowing
platelets in blood vesssels within approximate 37 days. Eckstein and Belgacem [6] used
hundreds of thousands of hours to simulate platelet aggregation even in low number
density of platelets.

DOI: 10.24507/icicelb.09.07.665

665

666 Y. YI AND M. TAMAGAWA

Previous researchers have developed several methods to accelerate their computation
of DPD. In hardware, H. Wu et al. [7] used graphics processing unit (GPU) for the
acceleration. Their conclusion was that the implementation running on single GPU can
be more than 20x faster than conventional implementation running on single CPU core. In
software, N. Goga et al. [8] presented the message passing interface (MPI) parallelization
of the DPD and discussed its main characteristics and performances.

Usually, MPI requires an explicit reconstruction of the code in order to expose par-
allelization and also needs to insert communication routines at the appropriate points.
So MPI requires the programmers to understand its details. However, one of the other
parallelization methods, OpenMP provides programmers a simple and flexible interface
for developing parallel applications. In OpenMP, the programmers only need to simply
add directives to the sequential version. The lower requirement makes OpenMP more
convinent than MPI. First released in 1997, OpenMP is an implementation of multi-
threading, with the runtime environment allocating threads to different processors [9].
A. Amritkar et al. [10] compared OpenMP with MPI based parallelization during the
simulation of dense particulate systems. They found that OpenMP is between 50-90%
faster than MPI. F. Broquedis et al. [11] proposed a new, hierarchical approach to the
execution of OpenMP threads onto multicore machines and achieved excellent speedups
on 16-core machines.

In this paper, dissipative particle dynamics is used to simulate platelet aggregation in
orifice flow. To overcome the demerit of time consumption, OpenMP is used to parallelize
the DPD. The parallelization performance will be checked. After the confirmation, platelet
aggregations with different initial platelet numbers are simulated in orifice flow. And the
aggregation on the wall is evaluated.

(a) Particle motion in the fluid (b) Force exerted on particle

Figure 1. Particle motion and its force

2. Computational Method. Dissipative particle dynamics is a kind of particle method.
So variables like velocity, force and position should be computed to trace particles in DPD
system. One particle in the fluid and the relevant variables are shown in Figure 1. And
computations of velocity, force and position are three steps in solving the DPD problem.
In DPD [12], velocity vector of particles (Vi) is obtained from a local, volume-averaged
fluid velocity. And Vi is computed by the following STEP 1 of the Verlet algorithm for
the integration of the DPD:

STEP 1: Vi = UFLU, (1)

where Vi is the velocity vector of the ith particle, and UFLU is the fluid velocity. The force
exerted on the ith particle (Fi) is the sum of the interaction force with other particles.
And Fi is calculated by the following STEP 2:

STEP 2: Fi =

NT∑
j=1

fINTER,ij, (2)

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.7, 2018 667

where NT is the total number of particles in the computational region. If position vectors
of particles are Xi and Xj, and relative position vector between the two particles is rij,
the relationship between Xi, Xj and rij is

Xj = Xi + rij. (3)

The interaction force term (|fINTER,ij|) is a piecewise function:

|fINTER,ij| =

−2α

(
1 − rij/a

R

)
if rij/a ≤ R,

0 if R ≤ rij/a ≤ L,

α

(
rij/a

L
− 1

)
if L ≤ rij/a ≤ M,

α

(
M

L
− 1

)
B − rij/a

B − M
if M ≤ rij/a ≤ B,

(4)

where rij = |rij|, α is the force coefficient, given to be 4.0×10−9N, and a is platelet radius.
In Equation (4), R, L, M and B are dimensionless parameters which controls the range
of the interaction force. In Equations (2) and (4), fINTER,ij is directed along the normal
to the wall or the vector connecting the centers of particles. The motion of each particle
is described by Newton’s law equation. And the computation of the displacement (dXi)
is STEP 3:

STEP 3: dXi = Vidt +
1

2

Fi

m
dt2. (5)

In Equation (5), m is the mass of single particle, and dt is the time step, set to be
1.0×10−6s.

Orifice flow is used for analysis in this computation. For the computation of flow field,
boundary conditions, turbulent model and computational region are described in our
previous work [1]. Figure 2 shows the streamline in orifice flow. For the computation of
particle transport, 5,000 particles are uniformly set in the flow field and cyclic boundary
condition is used. Figure 3 shows the position of particles in orifice flow at 0.0s and 0.02s.

Figure 2. Streamline in orifice flow

(a) 0.0s (b) 0.02s

Figure 3. Position of particles in orifice flow at 0.0s and 0.02s

It is found that particles transport in the flow, and some particles aggregate and become
a cluster during the flow.

Figure 3 shows the transport of particles in orifice flow. However, the 0.02s’ simulation
took about 0.8 hours on a computer with Intel core (TM) i7, 3.40 GHz CPU, 64G RAM,
and Ubuntu 14.04 64bit operating system. And the computational time needed in each

668 Y. YI AND M. TAMAGAWA

Table 1. Computational time in each step

Computational time (s) Occupation ratio (%)
STEP 1 0.020 6.1
STEP 2 0.304 92.7
STEP 3 0.004 1.2

(a) Serial code (b) Parallel code

Figure 4. Parallelization of DPD

step is tested and shown in Table 1. From Table 1, it is found that the code spends most
of the time (92.7%) on STEP 2, that is the computation of the force. In our code, the
force exerted on the ith particle is computed by the sum of the interaction force between
the ith particle and all the other particles. And the force exerted on all particles should
be calculated. However, the velocity and displacement of single particle are computed by
using its own variables, without variables of other particles. If the number of particles is
NT in the system, the computation of force for all particles should be done for N2

T times.
And the computation of velocity and displacement should be done for NT times. Then
the algorithm of STEP 1 and STEP 3 is linear time, and the algorithm of STEP 2 is
subquadratic time. It is thought to be the reason of time consumption in STEP 2. In our
simulation, OpenMP is used to parallelize STEP 2 to decrease the computational time.

OpenMP in our code is used as shown in Figure 4. Figure 4(a) is the serial code, and
Figure 4(b) is the parallel code. Library routine, parallel statement and parallelization
of do loop are used to realize the parallelization. The library routine includes external
procedures which can be used for directed parallel decomposition, and parallel statement
is used to declare the part that will be parallelized. And call cpu time is used to test the
CPU time.

The parallel part is used for the computation of the interaction force between the ith
and jth platelet. It consists of two DO loops. For the computation of the force of the
ith particle, variables of other particles are not needed. It is thought that one DO loop

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.7, 2018 669

Figure 5. Parallel processing
(Pi means the ith processor)

Figure 6. Averaged CPU
time vs. number of processors

is independent. So OpenMP can divide this DO loop into several DO loops as shown in
Figure 5. The computation in each DO loop can be done in each CPU processor.

3. Results and Discussion.

3.1. Test case and precomputation. In this paper, OpenMP is used to parallel the
DPD to shorten the computational time. In order to check the performance of OpenMP,
call cpu time (t1) and call cpu time (t2) are used to test the CPU time at the beginning
and at the end of the computation as shown in Figure 4(b). Then t2 − t1 is the total
CPU time for computation by all CPU processors. And the averaged CPU time (tAVE) is
calculated by

tAVE =
t2 − t1
NPROC

, (6)

where NPROC is the number of processors used in the parallelization. Figure 6 shows its
performance. In the graph, the x-axis represents the number of processors used in the
parallelization, and the y-axis represents the averaged CPU time. It is found that the
averaged CPU time decreases when the number of processors increases. Table 2 shows
the averaged CPU time under different number of processors and the ratio to the time in
serial code. It is found that the code parallelized by 12 processors need only 14.3% of the
time in serial computation. Speedup is also computed, and it is defined to be

S =
tSER

tPARA

. (7)

In Equation (7), S is speedup, tSER is the CPU time in serial computation, and tPARA is
the averaged CPU time when the code is parallelized. Figure 7 shows the relationship
between number of processors and speedup. It is found that the speedup increases when
the numbers of processors increase. And speedup reaches 7.1 when 12 processors are used.

Table 2. Relationship between number of processors and averaged CPU time

Parallel comp. Serial comp.
Number of processors 1 2 6 12 1

tAVE(s) 26605 15623 6890 3857 26972
Ratio to the serial comp. 98.6% 57.9% 25.5% 14.3% 100.0%

670 Y. YI AND M. TAMAGAWA

Figure 7. Speedup vs. num-
ber of processors

Figure 8. Averaged CPU
time vs. number of particles

3.2. Main results. Previously, the performance of OpenMP has been discussed. The
first topic of this section is the CPU time needed for computation. The second topic is
aggregation process. This aggregation process is composed of averaged force and aggrega-
tion number (PDF). Platelet aggregates on the wall when the platelet interacts with the
already aggregated platelets. So the aggregation number means the number of platelets
in the aggregations.

In the test case, the number of particles is about 5,000. And the number of particles
under real concentration (2.0×108/ml) in the scale of orifice flow is 7.5×106. And the
relationship between the number of particles and tAVE/NSTEP is shown in Figure 8. tAVE

is the averaged CPU time, and NSTEP is the number of time iterations. It is found that
the code needs about 144 years to complete 0.2s’ simulation in the case of real platelet
concentration. In order to avoid this vast time, the number of particles was decreased to
control the computational time within one week. And it is interesting to discuss the effect
of the decrease of the number of particles. Fourteen cases with different particle numbers
in the fluid are used in the simulation. The numbers of particles are from 100 to 36,000.

As for aggregation process, averaged force and aggregation number (PDF) are com-
puted. Averaged force is defined to be

FAVE =

NT∑
i=1

Fi

NT

, (8)

where FAVE is the averaged force in DPD system, Fi is the force exerted on the ith particle,
and NT is the total number of particles in the system. Figure 9 shows the time history
of FAVE when the numbers are 110, 1500, 24000 and 33000. It is found that the force
increases at first, and then decreases to the stable value before about 0.18s. And the
stable averaged force is calculated. Relationship between number of particles and the
stable averaged force is shown in Figure 10. It is found that the averaged force increases
when number of particles increases. However, the increase gradient becomes lower and
lower. And FAVE tends to be constant when the number of particles is above 2.0×104. It
is thought to be convergent.

Next is platelet aggregation. Figure 11 shows the distribution of probability distribu-
tion function (PDF) on the wall when numbers of platelets are 24,000 and 33,000. The
aggregation number at a point of the wall describes the probability of platelet aggregation

ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.7, 2018 671

Figure 9. Time history of
averaged force

Figure 10. Number of parti-
cles vs. averaged force

(a) Particle number: 24,000 (b) Particle number: 33,000

Figure 11. Distribution of probability distribution function on the wall

at the point. PDF is defined to be

PDF =
Num(x)

NT

, (9)

where Num(x) is aggregation number on the wall at position x. It is found that aggrega-
tion probability at the recirculation area and the reattachment point is higher than the
probability downstream. It is also found that for both cases, less than 8% of all particles
will aggregate at a position on the wall.

4. Conclusions. This paper parallelizes dissipative particle dynamics by OpenMP. It is
found that computational time is efficiently shortened. It is also found that recirculation
area and reattachment point have higher probability of platelet aggregation.

As the CPU time for DPD can be shortened, we will try to establish the hybrid approach
combining DPD and FDM to obtain a prediction method of thrombosis with high accuracy
and high performance in the orifice flow.

672 Y. YI AND M. TAMAGAWA

Acknowledgment. We acknowledge the OpenMP Architecture Review Board for their
providing this free software. A part of this work was supported by Grant-in-Aid for Sci-
entific Research on Innovative Areas 15H01601 and Challenging Research (Exploratory)
17K18844.

REFERENCES

[1] Y. Yi, M. Tamagawa and W. Shi, Prediction of thrombus formation on the wall by high shear rate
on Couette and orifice blood flows, Journal of Medical Imaging and Health Informatics, vol.7, no.1,
pp.79-84, 2017.

[2] A. Tosenberger, F. Ataullakhanov, N. Bessonov, M. Panteleev, A. Tokarev and V. Volpert, Modelling
of thrombus growth and stopping in flow by the method of dissipative particle dynamics, Russian
Journal of Numerical Analysis and Mathematical Modelling, vol.27, no.5, pp.507-522, 2012.

[3] N. Filipovic, M. Kojic and A. Tsuda, Modelling thrombosis using dissipative particle dynamics
method, Philosophical Transactions of the Royal Society, vol.366, pp.3265-3279, 2008.

[4] I. V. Pivkin and P. D. Richardson, Effect of red blood cells on platelet aggregation, Engineering in
Medicine and Biology Magazine, vol.28, no.2, pp.32-37, 2009.

[5] N. Zhang, P. Zhang, L. Zhang, X. Zhu, L. Huang and Y. Deng, Performance examinations of mul-
tiple time-stepping algorithms on stampede supercomputer, Proc. of the 2015 XSEDE Conference:
Scientific Advancements Enabled by Enhanced Cyberinfrastructure, St. Louis, MD, USA, 2015.

[6] E. C. Eckstein and F. Belgacem, Model of platelet transport in flowing blood with drift and diffusion
terms, Biophysical Journal, vol.60, no.1, pp.53-69, 1991.

[7] H. Wu, J. Xu, S. Zhang and H. Wen, GPU accelerated dissipative particle dynamics with parallel
cell-list updating, IEIT Journal of Adaptive & Dynamic Computing, vol.1, no.2, pp.33-42, 2011.

[8] N. Goga, H. Berendsen, S. Baoukina, S. A. Moga, G. Dragoi, A. Hadar and B. Paviloiu, MPI paral-
lelization of innovative DPD thermostats, IEEE International Conference on Healthcare Informatics,
Philadelphia, PA, USA, p.476, 2013.

[9] OpenMP, http://www.openmp.org, 2015.
[10] A. Amritkar, S. Deb and D. Tafti, Efficient parallel CFD-DEM simulations using OpenMP, Journal

of Computational Physics, vol.256, no.1, pp.501-519, 2014.
[11] F. Broquedis, O. Aumage and B. Goglin, Structuring the execution of OpenMP applications for

multicore architectures, Proc. of the 25th IEEE International Parallel & Distributed Processing Sym-
posium, Atlanta, GA, USA, 2010.

[12] I. V. Pivkin, P. D. Richardson and G. Karniadakis, Blood flow velocity effects and role of activation
delay time on growth and form of platelet thrombi, Proc. of the National Academy of Sciences of
the United States of America, vol.103, no.46, pp.17164-17169, 2006.

