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Abstract. Dark channel prior (DCP) is the most popular algorithm used in haze re-
moval and underwater image restoration. Nevertheless, a problem that edge regions are
blurred, known as halo artifacts, occurs in DCP. In this paper, we propose a novel adap-
tive neighborhood strategy (AN-DCP) to reduce the halo artifacts in DCP. Our proposed
strategy uses the variable size of neighborhood depending on the deviation around the
pixel. The large size of the neighborhood helps to select the correct dark pixel in smooth
areas, and the small size of the neighborhood helps to preserve the edge characteristics.
The experimental results show that this strategy constructs the transmission map more
precisely than using the fixed neighborhood size even after the refinement step. The re-
stored scene radiance using the AN-DCP method has fewer halo artifacts near the depth
edges than those in DCP. The proposed AN-DCP method ensures improved restoration
quality compared with DCP for both hazed and underwater images.
Keywords: Adaptive neighborhood, Dark channel prior, Halo artifact, Underwater im-
age restoration

1. Introduction. Underwater imaging can use various devices, including optical cam-
eras, laser scanners, or sonar devices. Optical and laser images are clear and easily un-
derstood, but the distance of the acquisition device from objects is restricted from a few
meters to tens of meters. In turbid water, optical vision is effective only at an extremely
short distance. Sonar images, which are widely used in undersea exploration, have the
advantages of far distance and good penetration. Acoustic sensors capture good distance
and size information of objects, but sonar images are corrupted by multiplicative noise.
Thus, sonar data are needed for professional interpretation and are unsuitable for short-
distance environment exploitation. Some information such as color and texture features
can be extracted only from optical images and not from acoustic images.

To effectively detect the underwater state, most underwater vehicles carry high-resolu-
tion camera equipment and sonar or laser orientation systems to complement each other.
By using fixed surveillance cameras or underwater vehicles equipped with photographic
lens, we can obtain real-time underwater images to analyze the characteristics of under-
water objects and achieve some specific objectives.

Optical images are rich sources of information. However, in underwater environments,
image quality is heavily degraded due to the absorption and scattering effects of light
propagation. Dispersion phenomenon refers to the condition in which the object-reflected
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light spreads through the water particles, and multiple diffusion caused by the dispersion
phenomenon degrades the visibility and contrast of underwater images.

Image restoration is an important preprocessing step for pattern recognition or com-
puter vision such as applications of object detection or recognition. After recovering the
quality of a distorted image, the features and information in the image become more obvi-
ous to be collected than that without recovering. Therefore, underwater image restoration
is an important issue for underwater vision.

Significant research has addressed the technique of underwater image restoration. Sche-
chner and Karpel [1] used a polarizer to reduce degradation effects and obtained clearer
images. However, polarization filtering must be conducted when acquiring images so
that the method cannot recover existing distortion underwater images. The problem of
underwater image restoration is similar to that of haze removal. Some researchers have
used the dark channel prior (DCP) strategy to solve the haze removal problem, but a
certain degree of distortion still occurs, as in the case of halo artifacts.

In this paper, we propose a novel adaptive neighborhood subdivision strategy based
on DCP, and a large number of halo artifacts are removed in the proposed adaptive
neighborhood DCP method. The AN-DCP restoration method for underwater or foggy
images preserves the silhouette features and reduces the halo artifacts. In the rest of
the paper, Section 2 reviews previous work on DCP, Section 3 describes the proposed
AN-DCP strategy, Section 4 explores the proposed method and discusses the results, and
Section 5 provides the conclusions.

2. Background. The scattering and absorption phenomena of the light propagation in
underwater environments reduce the visibility of underwater images. The degradation
model of underwater images is formulated similar to that of hazed images. The degrada-
tion model [2,4] for a hazed or underwater image I at a pixel x can be expressed as

I(x) = J(x)t(x) + (1− t(x))A (1)

where I(x) is the observed color vector, J(x) is the scene radiance vector, A is the global
atmospheric light (or background light) and t(x) is the medium transmission based on
the Beer-Lambert law as follows:

t(x) = e−βd(x) (2)

In (2), β is the attenuation and d(x) is the scene depth.
In recent years, some studies have resolved the underwater image restoration problem by

using dehazing algorithms. The most popular methodology is DCP, which was proposed
by He et al. [4] for single-image haze removal. The prior comes from natural observation
and the statistical result. That is, in the natural scenes, at least one of the RGB color
channels is dark around a neighborhood called the dark channel. The formula of the
estimated dark channel Jdark (x) is as follows and approximately equal to zero:

Jdark (x) = min
c∈{r,g,b}

min
y∈Ω(x)

Jc(y) (3)

In Equation (3), Jc(x) is a color channel of the scene radiance J(x), and Ω(x) is the
local patch or neighborhood centered at the pixel x. Most researchers use 15× 15 as the
patch size, as well as 3× 3 or 11× 11 [4,6-9].

We state the DCP algorithm below shortly. A general dehazing algorithm based on
DCP can be divided into the following steps.

Dark channel construction. The size of the local patch Ω(x) is defined, and then the
dark channel value map is obtained by Equation (3).

Atmospheric light estimation. In most haze-opaque regions, the atmospheric light
is the scene light. The brightest pixels in the hazy image are considered to be the most
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haze-opaque [4]. Thus, the pixel with the brightest dark channel value is used to estimate
the atmospheric light.

Ac = Ic(arg max Jdark (x)) ∀c ∈ {r, g, b} (4)

However, the brightest value of the dark channel may be a white object in the scene. In
practice, the top 0.1% brightest pixels on the dark channel are selected, and are averaged
to estimate the atmospheric light.

Transmission map estimation. Using Equations (1), (3), and (4), we can estimate the
transmission value t̃(x) of each pixel as

t̃(x) = 1− min
c∈{r,g,b}

min
y∈Ω(x)

(

Ic(y)

Ac

)

(5)

Transmission map refinement. Since the estimated transmission map t̃(x) in Equation
(5) contains certain block effects, it has to be refined according to the original color texture.
Many researchers have addressed this issue through methods such as soft matting [4],
bilateral filtering [5] and guided filtering [5]. The early refinement proposed by [4] is soft
matting, which is time-consuming. Both the bilateral and guided filters are classified as
edge-preserving smoothing operators, and the latter has better behavior near the edges
than the former. In this study, we use the guided filter to solve the refinement problem.
The guided filtering strategy is also faster than the others.

Recovering the scene radiance. From the last step, we obtain the refined transmission
map t(x), and then the color channel Jc(x) of the scene radiance J(x) is recovered as
follows:

Jc(x) =
Ic(x)−Ac

t(x)
+ Ac ∀c ∈ {r, g, b} (6)

3. Proposed Method.

3.1. Adaptive neighborhood dark channel prior (AN-DCP). The DCP method
finds the dark channel in a local neighborhood (patch) for each pixel. A dark channel
point is the local minimum, and may be covered by several neighbor patches. That is,
the dark values are the same in these adjacent patches, and the block effect appears in
the dark channel map. The dark channel map is used to estimate the automorphic light
and the transmission rate, so the block effect also appears in the transmission map. In
most related studies, the patch size for estimating the dark channel is fixed as 15× 15 or
11× 11 [10].

The decision of the neighborhood size is an important issue. A large neighborhood
size increases the probability that a patch contains a dark pixel. By contrast, a small
neighborhood may not contain a dark pixel. However, the estimated transmission values
are constant in a neighborhood. A large neighborhood size produces the halo artifact
near depth edges even after refinement, as shown in Figure 4(c).

In this paper, we adopt the strategy of adjusting the neighborhood size when estimating
the medium transmission t̃(x) in Equation (5) according to the deviation around the pixel.
That is, the larger the deviation around the pixel is, the smaller the patch size is.

The decision rule is defined as the Algorithm. The symbol Ωn(x) is the neighborhood
centered at x with a size of n× n.

The fixed-size neighborhood Ω(x) in (5) is replaced by the variable-sized neighborhood
Ωn(x). By adaptively adjusting the neighborhood size, the transmission map is estimated
more precisely than using the fixed size. In the rest of the paper, we refer to our method
as adaptive neighborhood dark channel prior (AN-DCP).
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Algorithm GetNeighborhoodSize
Input: the colored image I

Output: NS(x)
Set minSize = 3, maxSize = 15
K(x)← min

c∈{r,g,b}
Ic(x) ∀x ∈ I

compute StdDevn(x), for n = minSize, minSize+2, . . . , maxSize
for each pixel x in image I

n← maxSize
while (StdDevn(x) > ε and n > minSize) do

n← n− 2
end
NS(x)← n

End

3.2. Underwater dark channel prior (UDCP). In an underwater environment, es-
pecially the deep sea, the red channel of the water light is attenuated largely. If the
dark channel is computed according to Equation (3), most dark values come from the red
channel. Thus, similar to most of the studies on underwater images [9], the dark channel
is computed only by considering the green and blue color channels. Thus, Equation (3) is
revised as Equation (7). Drews-Jr et al. [10] named the dark channel, excluding the red
channel, as UDCP.

Jundersea

dark
(x) = min

c∈{g,b}
min

y∈Ω(x)
Jc(y) (7)

In the next section’s experiment, the dark channel computation uses either Equation
(3) or (7) depending on the image type. However, other details of UDCP are the same as
those in traditional DCP implementation.

4. Experimental Results. To evaluate the performance of the proposed method, we
exploit some experiments using the AN-DCP and DCP methods separately. As we want
to verify the effectiveness of the adaptive neighborhood size, the only difference between
these two implementations is whether the neighborhood size is variable or fixed. The
other steps or parameters are the same.

Figure 1 shows sample images in the experiment. Our method is also appropriate
for hazed images, and thus. Figures 1(a) and 1(b) are underwater images and 1(c) and
1(d) are hazed images. However, the dark channel computation uses Equation (7) for
underwater images and Equation (3) for hazed images. Figure 2 shows the map of the
neighborhood size based on the AN-DCP method. In the experiment, the neighborhood
size is set from 3 × 3 to 15× 15 depending on the deviation of the neighborhood. Com-
pared to the original images in Figure 1, the more sophisticated the area is, the finer the
neighborhood size in this area is. The depth edges in which the front and back objects are
adjacent to each other are subdivided into small neighborhoods. Thus, the more precise
transmission rate can be estimated and compared to the one with a fixed neighborhood
size.

Figure 3 compares the transmission maps estimated by DCP and AN-DCP. The depth
edges in the transmission maps generated by AN-DCP are sharper than those generated
by DCP. Figure 3(d) distinguishes the small leaves from the background sky better than
Figure 3(b) does. Figure 4 shows the restored scene radiance obtained through these two
methods. The halo artifacts near the depth edges are less in the AN-DCP than in the
DCP method. Furthermore, a better image can be restored by using the former method
than the latter.
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(a) (b)

(c) (d)

Figure 1. Sample images: (a) coral reef [11], (b) sculpture [12] (Courtesy
of Jason deCaires Taylor), (c) forest [13], and (d) mountain [13]

(a) (b)

(c) (d)

Figure 2. (color online) The maps of the neighborhood size using AN-
UDCP or AN-DCP for the images in Figure 1. The color value of the pixel
represents the neighborhood size around the pixel.
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(a) (b)

(c) (d)

Figure 3. Transmission map comparison for the image in Figure 1(c): (a)
fixed neighborhood size (DCP), (b) refined transmission map of (a), (c)
variable neighborhood size (AN-DCP), and (d) refined transmission map of
(c)

(a) (b) (c)

(d) (e) (f)

Figure 4. Comparison of transmission maps and restored scene radiance
for the image in Figure 1(a): (a) refined transmission map using UDCP, (b)
restored scene radiance using UDCP, (c) enlarging the red rectangle in (a),
(d) refined transmission map using AN-UDCP, (e) restored scene radiance
using AN-UDCP, and (f) enlarging the red rectangle in (e)
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5. Conclusions. In this paper, we propose a novel adaptive neighborhood selection (AN-
DCP) when estimating the transmission map. The experimental results show that this
strategy constructs the transmission map more precisely than the original fixed neighbor-
hood even after the refinement step. The restored scene radiance has fewer halo artifacts
than the original one caused by the coarse patch size.

For simplicity, other phenomena causing the underwater image degradation are ignored
in this study, such as color shift phenomenon, which is due to the different attenuation
rates of lights as a result of varying wavelengths. Moreover, in the deep sea, even though
the blue light is attenuated, artificial light is necessary but it also degrades underwater
images because of the glare. These issues will be investigated in future research to deal
with a larger variety of distorted underwater images.
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