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Abstract. It is observed that 2DLDA may confuse the contribution of the projection
vectors when used for feature extraction. To overcome the drawback of 2DLDA, we
present a novel image feature extraction algorithm called log-based weighted two dimen-
sional linear discriminant analysis (LW-2DLDA). It is an improvement of direct 2DLDA
by introducing a logarithmic function to weigh the projection vectors of both within-class
and between-class subspaces. The proposed approach extracts discriminative features by
subsequently mapping the images into the weighted intra-class subspace and the weighted
extra-class subspace. As LW-2DLDA loads different vectors with proper weights, it is
capable of avoiding overemphasizing or over-underrating any projection vectors, so that
more discriminative features can be obtained in the projection subspace. Moreover, LW-
2DLDA is image matrix-based rather than vector-based, and it deals well with small
sample size problem. The new algorithm is tested on FERET and LFW face databases,
and the experimental results demonstrate its effectiveness.
Keywords: Two-dimensional linear discriminant analysis (2DLDA), Feature extraction,
Log-based weights, Face recognition

1. Introduction. Linear discriminant analysis (LDA), mainly as a technique for fea-
ture extraction, has been successfully applied to face recognition field in the past two
decades. The optimal linear transformation of LDA achieves maximum class separabil-
ity by minimizing the within-class distance and maximizing the between-class distance
simultaneously. Though LDA is a classical method, numerous variants of it are still suc-
cessively proposed recently. These variants are designed to enhance the quality of feature
representation, such as local LDA [1], or to address other machine learning tasks, such
as semi-supervised LDA [2] and multi-label LDA [3]. To boost the discriminative ability
of the subspace of LDA, regularized LDA methods [4-7] and weighted LDA approaches
[8-11] have been designed. Some regularized LDA methods propose to impose constraints
on the optimal transformation of LDA to avoid overfitting [4,5], while others impose lo-
cal structure information of data on the scatter matrices to achieve robustness [6,7]. The
motivation of various weighted LDA is to alleviate the imbalance influence of the between-
class distances by redefining the between-class or within-class matrix, both of which need
to introduce weighting functions.

All of the above LDA is one dimensional LDA (1DLDA), which means they must convert
the 2D image matrices into 1D high dimensional vectors. Since 1DLDA operates on the
1D high dimensional vectors, it usually encounters singularity of the within-class scatter
matrix, which is also called small sample size (S3) problem. Although 1DLDA can be
modified to solve the problem, such as sparse uncorrelated LDA [12], it is laborious. An
efficient solution to the S3 problem is two dimensional LDA (2DLDA), which can perform
LDA directly on image matrices, overleaping the process of turning image matrices into
vectors. 2DLDA was first proposed in [13]. Since then, dozens of 2DLDA based algorithms
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have been designed. [14] presents a 2DLDA method for face recognition, which proves to
be more efficient than 1DLDA. Considering the local information of data, [15] designs a
weighted 2DLDA algorithm to map the images such that pairwise between-class distances
can be well balanced. Similarly to regularized 1DLDA, [16] proposes robust L1-norm
2DLDA. To extract sufficient features from images, [17,18] propose bidirectional 2DLDA,
both of which learn two transformation matrices for images. Besides, [18] integrates
multiple kernels into 2DLDA to handle non-linear mappings.

All of the LDA methods, including 1DLDA and 2DLDA, work well when the number of
classes is small, but degenerate obviously when that is large. One possible reason is that
in the process of generating the discriminant matrices or projection subspaces, and some
important eigenvectors are overemphasized or some less important eigenvectors are over-
discounted. To address the problem, we propose a novel log-based weighted 2DLDA in
this paper to reweigh the coefficients of projection vectors by using logarithmic function.

Our major contributions are summarized as follows. 1) We introduce a logarithmic
function to endow various weights to eigenvectors according to their corresponding eigen-
values. The new weight function helps properly emphasize the important projection
vectors of within-class and between-class subspaces, while avoids over-emphasizing or
over-underrating effect. 2) We develop a new algorithm to solve the LW-2DLDA based
on singular value decomposition and simultaneous diagonalization of the scatter matrices.
The new algorithm is much more efficient, since it avoids the expensive computation of
inverse matrix. 3) Extensive experiments on two challenging face datasets are conducted
to show the effectiveness of our method.

The rest of the paper is organized as follows. Section 2 reviews 2DLDA and presents
the proposed approach, and some related discussions are all covered. In Section 3, the
proposed approach is applied for face recognition and compared with some other related
methods. Finally, a brief conclusion is given in Section 4.

2. The Proposed Approach. In this section, we first review the framework of 2DLDA,
and explicitly demonstrate the limitations of existing 2DLDA. Then we describe the pro-
posed LW-2DLDA algorithm and its advantages.

2.1. Overview of 2DLDA and its limitations. Suppose there are C known individ-
uals in the training set. M is the total number of training samples and Mi is the number
of training samples of the ith individual. The jth training sample of the ith individual

is denoted by an m × n matrix A
(i)
j . The mean image of the ith individual is denoted by

A
(i)

and the mean image of all training samples is denoted by A.
Based on the given training image samples, the image between-class scatter matrix and

image within-class scatter matrix are defined as

Gb =
1

M

C∑
i=1

Mi

(
Ai − A

)T (
Ai − A

)
(1)
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1

M
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(
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)T (
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By the definition, it is easy to verify that both Gb and Gw are n×n non-negative definite
matrices. It should also be mentioned that Gw is invertible when there are at least two
training samples of each individual. The optimal projection matrix W of 2DLDA can be
obtained by solving the following optimization problem: W = [w1, . . . , wd] = arg max

tr
(
W T GbW

)
tr (W T GwW )

wT
k wl = 0, k ̸= l, k, l = 1, . . . , d

(3)
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To solve the above problem efficiently, [9] designed a simple algorithm named direct
LDA, which is readily manipulated on image matrices to form direct 2DLDA. The pro-
jection matrix W computed by direct 2DLDA can be expressed as the following:

W = Y D
−1/2
b V D−1/2

w

= [u1, . . . , ud]


1√
µ1

· · · 0
... · · · ...
0 · · · 1√

µd


︸ ︷︷ ︸

weighted extra-class subspace

∗ [v1, . . . , vd]


1√
λ1

· · · 0
... · · · ...
0 · · · 1√

λd


︸ ︷︷ ︸

weighted intra-class subspace

(4)

In Equation (4), Y = [u1, . . . , ud] is a matrix consisting of eigenvectors of Gb corresponding
to the first largest d eigenvalues µ1, . . . , µd; V = [v1, . . . , vd] is a matrix constructed by the

eigenvectors of
(
Y D

−1/2
b

)T

Gw

(
Y D

−1/2
b

)
corresponding to the first largest d eigenvalues

λ1, . . . , λd. uk is an n-dimensional vector and vk is a d-dimensional vector for k = 1, . . . , d.

For the right side of Equation (4), the two diagonal matrices D
−1/2
b and D

−1/2
w can be

treated as weighting matrices on corresponding eigenvectors if we associate the first two
terms and latter two terms respectively. We call them weighted extra-class subspace and
weighted intra-class subspace. The D-2DLDA algorithm seems to work well; however, the
weighting process may confuse the contribution of the eigenvectors, leading to either the
loss or the redundancy of information in representation. Specifically, for the between-class
scatter matrix, the projection vector uk is more important than the projection vector ut

if µk > µt; while for the within-class scatter matrix, the projection vector vk is more
important than the projection vector vt when λk > λt, where k, t = 1, . . . , d. In order
to extract more discriminative information, it is beneficial to emphasize the important
projection vectors and underrate the less important ones. For the extra-class subspace in
Equation (4), however, 1/

√
µk < 1/

√
µt implies that the weight coefficients deemphasize

the important projection vectors and highlights the unimportant ones of between-class
scatter matrix, which is contrary to our expectation. For the intra-class subspace, the
weight coefficients do highlight the important projection vectors and underrate the less
important ones since 1/

√
λk < 1/

√
λt. However, in some cases, when an eigenvalue λk is

either very small or large, the corresponding weighting coefficient 1/
√

λk might be either
too large or small, resulting in over-emphasizing projection vectors with tiny eigenvalues
or over-depressing projection vectors with huge eigenvalues. As a consequence, features
extracted by D-2DLDA may involve redundant information or loss helpful information.

2.2. LW-2DLDA. To overcome the drawbacks of the D-2DLDA algorithm, we improve it
by endowing various weights to the projection vectors according to the importance, so that
the important vectors will be emphasized and less important vectors will be deemphasized
properly. A logarithmic function is introduced to obtain proper weight coefficients of the
projection vectors according to their eigenvalues. We call our method log-based weighted
2DLDA (LW-2DLDA). The proposed LW-2DLDA algorithm is depicted as follows. The
difference and advantages of LW-2DLDA will be discussed shortly later.

It can be noticed that the key difference of LW-2DLDA over D-2DLDA is the revision
of Equation (4), i.e., the logarithmic function (or the reciprocal of logarithmic function),
instead of square root is introduced to compute weight coefficients of the projection vectors
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The LW-2DLDA Algorithm

Input: Training face images of all individuals: A
(i)
j , the parameter value of α.

Output: Features extracted from input images: B
(i)
j .

Step 1: Calculate the image between-class scatter matrix Gb and image within-class
scatter matrix Gw according to Equation (1) and Equation (2), respectively.

Step 2: Diagonalize Gw by finding matrix V such that V T GwV = Dw, where V T V =
I and Dw = diag(λ1, λ2, . . . , λn) is a diagonal matrix with the diagonal values sorted
in decreasing order.

Step 3: Calculate H = diag(log2 λ1, log2 λ2, . . . , log2 λn), Z = V H−1 and G̃b =
ZT GbZ.

Step 4: Diagonalize G̃b by eigen-analysis UT G̃bU = Db, where UT U = I and Db =
diag(µ1, µ2, . . . , µn) is a diagonal matrix with values in the diagonal position sorted
in decreasing order.

Step 5: Calculate the discriminant matrix W = ZQP , where Q = (u1, u2, . . . , ud) is
constructed by the first d columns of U and P = diag(log2 µ1, log2 µ2, . . . , log2 µd).

Step 6: Output the extracted features: B
(i)
j = A

(i)
j (V H−1QP ).

according to their eigenvalues, just as Equation (5) shows.

W = V H−1QP

= [v1, . . . , vd]


1

logα λ1
· · · 0

... · · · ...
0 · · · 1

logα λn


︸ ︷︷ ︸

weighted intra-class subspace

∗ [u1, . . . , ud]

 logα µ1 · · · 0
... · · · ...
0 · · · logα µd


︸ ︷︷ ︸

weighted extra-class subspace

(5)

By calculating the logarithmic value of each eigenvalue, the ratio between the largest
and smallest weight coefficients is massively reduced, i.e., the weights are distributed in
a narrower range than before, which is helpful for controlling the emphasizing to the
projection vectors. According to Equation (5), the important projection vectors of both
the intra-class subspace and extra-class subspace are gradually emphasized by the weight
coefficients while the unimportant ones are deemphasized. Concretely, for the intra-class
subspace, with an increase of the eigenvalues of the within-class matrix, the important
eigenvectors corresponding to small eigenvalues are gradually stressed and the unimpor-
tant eigenvectors corresponding to large eigenvalues are slowly underrated; for the extra-
class subspace, the eigenvectors corresponding to large eigenvalues are gradually enhanced
and those corresponding to small eigenvalues are gradually depressed. Briefly, the input
images are first mapped onto the weighted intra-class subspace to reduce the intra-class
variations efficiently, and then are further mapped onto the weighted extra-class subspace
to enhance the distinguishable information. Therefore, the features extracted through
LW-2DLDA are more discriminative in representation.

3. Experimental Results. The proposed LW-2DLDA algorithm is used as a feature
extraction method for face recognition. After projecting all the samples into the projective
feature space, the nearest neighbor classifier (NNC) with Euclidean distance is applied to
performing classification in the feature space.

To evaluate the performance of the proposed LW-2DLDA for face recognition over other
related algorithms, we carry out several experiments on two popular datasets, i.e., the
FERET and LFW (Label Faces in the Wild) face datasets. To assess the performance of
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algorithms, we select a subset of FERET dataset containing 1358 images of 194 individ-
uals. Each individual has 7 face images resized to 80 × 80 pixels. For LFW dataset, we
gather the subjects containing no less than ten samples and then get a dataset with 158
subjects from LFW-a database, and further choose the first 10 images of 158 individuals
to construct the face subset for evaluation. All images in this subset are resized to 64×64
pixels. Figure 1 displays some sample images in FERET and LFW subset.

(a) FERET dataset

(b) LFW dataset

Figure 1. Sample face images from (a) FERET dataset and (b) LFW dataset

3.1. The impact of parameter in logarithmic function. To investigate the impact
of values of α, which is a vital parameter in logarithmic function, we set the value of α
to be 2, 5, 10, 20, respectively to calculate the weight coefficients of projection vectors
according to the eigenvalues. Meanwhile, as an alternative weighting function of logarith-
mic functions, the square root function is also tested to be compared with. We randomly
select num (num = 2, 6) images of each subject for training and the rest for testing in
both FERET and LFW databases. We run each experiment for 10 times and Figure 2
displays the average recognition rates over various dimensions with respect to different
weighting functions.

It shows in Figure 2 that when the value of α is 2, 5 or 10, the best average recogni-
tion accuracies achieved by logarithmic function make little difference in each group of
experiments, and possess evident advantage over the square root function, especially in
the more complicated LFW dataset. However, when the value of α is 20, which is a much
larger base of logarithmic function, the highest recognition rates are significantly lower
than the performance when small parameter values are used. According to Figure 2, when
log 20 is employed to calculate the weights, the performance is even worse than the square
root function. This implies that smaller parameter values may more properly weigh the
projection vectors and generate satisfying recognition performance compared with larger
ones. It can also be observed from the figure that the parameter value is dataset depen-
dent, since log 2 produces the best performance on FERET dataset, while log 5 achieves
the highest recognition rate on LFW dataset. In the following experiments, we select log 2
and log 5 as the weighting functions for FERET and LFW dataset to calculate the weight
coefficients, respectively.

3.2. Performance comparison. In this section, the proposed LW-2DLDA is tested
with different training sample numbers on the two face databases, and compared with the
other related 2DLDA methods. These compared methods are direct 2DLDA (D-2DLDA)
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(a) FERET, num = 2 (b) FERET, num = 6

(c) LFW, num = 2 (d) LFW, num = 6

Figure 2. The effect of various weighting functions

Table 1. Recognition accuracy on FERET face database (mean ± std-dev)%

Method num = 2 num = 3 num = 4 num = 5 num = 6
D-2DLDA 58.78 ± 6.03 65.50 ± 7.52 69.54 ± 8.31 72.20 ± 9.01 74.01 ± 11.32
L’s 2DLDA 56.65 ± 9.06 60.25 ± 8.64 62.96 ± 8.25 66.25 ± 9.06 69.66 ± 10.44
P-2DLDA 60.58 ± 5.50 66.79 ± 9.13 71.98 ± 9.39 74.33 ± 10.67 77.02 ± 10.11
Re-2DLDA 57.61 ± 8.22 60.95 ± 9.24 64.06 ± 8.85 68.22 ± 9.60 71.72 ± 9.64
WF-2DLDA 61.05 ± 7.46 67.39 ± 7.55 71.88 ± 10.24 75.26 ± 10.18 78.52 ± 10.32
LW-2DLDA 62.29 ± 6.82 68.86 ± 8.92 73.39 ± 9.25 76.56 ± 10.62 78.87 ± 11.41

[9], parameterized 2DLDA (P-2DLDA) obtained according to [11], Loog’s 2DLDA (L’s
2DLDA) obtained by expanding the one dimensional weighted LDA in [8] to the two-
dimensional case, regularized 2DLDA (Re-2DLDA) [4] and weighted fuzzy 2DLDA (WF-
2DLDA) [10]. All of the above methods are used for feature extraction in our experiments.
In each database, we randomly choose num (from 2 to 6) samples respectively from each
class for training and the rest for testing purpose. For each value of num, we run the
experiment for 10 times and report the best averaged performance. Table 1 and Table
2 respectively display the comparison results among different methods on FERET and
LFW dataset.

As displayed in Table 1, the proposed LW-2DLDA achieves the best recognition per-
formance in each experiment, and possesses the advantage of about 2 percent over the
second-best method, i.e., P-2DLDA on FERET dataset, when the number of training
samples in each class is small, i.e., num = 2, 3, 4. It shows in Table 2, the recognition
rates of all methods on LFW database are much lower than those on FERET database,
which implies that recognizing faces in LFW database is more challenging than FERET
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Table 2. Recognition accuracy on LFW face database (mean ± std-dev)%

Method num = 2 num = 3 num = 4 num = 5 num = 6
D-2DLDA 29.52 ± 9.50 34.88 ± 10.77 36.90 ± 12.62 38.23 ± 15.12 39.14 ± 16.43
L’s 2DLDA 30.46 ± 9.76 32.26 ± 10.14 33.61 ± 12.58 35.26 ± 11.96 36.96 ± 17.23
P-2DLDA 31.66 ± 10.34 35.83 ± 12.44 40.07 ± 14.49 44.04 ± 13.26 45.39 ± 16.55
Re-2DLDA 31.94 ± 9.71 34.61 ± 10.39 36.16 ± 11.32 38.24 ± 14.06 39.99 ± 15.36
WF-2DLDA 32.42 ± 9.60 35.53 ± 11.68 38.12 ± 12.57 41.30 ± 14.45 42.64 ± 16.16
LW-2DLDA 36.28 ± 9.45 39.56 ± 11.72 42.38 ± 13.31 44.76 ± 14.38 46.57 ± 15.20

dataset. Even so, our LW-2DLDA approach defeats all other compared methods and
performs the best when different numbers of samples are used for training. Moreover,
the superiority of the proposed method over other methods on this dataset is more evi-
dent. According to both tables, we can observe that the advantage of LW-2DLDA over
other methods is large when small number of samples used for training, is decreasing
when more and more samples are used in the training process. This indicates that our
proposed method is more suitable for addressing small sample size problem.

4. Conclusions. In this paper, we propose a novel and efficient log-based weighted
2DLDA (LW-2DLDA) algorithm for feature extraction. LW-2DLDA introduces a log-
arithmic function to recalculate the weight coefficients of projection vectors, which pre-
vents the overemphasizing or over-deemphasizing effect in subspace. Therefore, more
discriminative features can be produced by using the proposed approach. Encouraging
experimental results demonstrate the effectiveness of our algorithm. In addition, the
proposed LW-2DLDA can also be generalized to one dimensional case or embedded in
methods which use LDA technique to process images.

In future work, we would attempt to expand our method to two-directional 2DLDA,
which would be helpful for extracting discriminative features from two directions of im-
ages. Also, to integrate our proposed feature extraction idea with feature selection will
be one interesting research topic.
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