
ICIC Express Letters
Part B: Applications ICIC International c⃝2018 ISSN 2185-2766
Volume 9, Number 5, May 2018 pp. 375–380

IMPROVING A NEURAL NAMED ENTITY MODEL
WITH LINGUISTIC FACTORS

Hai Nguyen1, Long Nguyen2, Tan Le3, Phuoc Tran4,∗ and Huu Nguyen5

1Faculty of Physics
Ho Chi Minh City University of Pedagogy

No. 280, An Duong Vuong Street, Ward 4, District 5, Ho Chi Minh City, Vietnam
hainm@hcmup.edu.vn

2CLC Lab
Faculty of Information Technology
VNU-HCM University of Science

No. 227, Nguyen Van Cu Street, Ward 4, District 5, Ho Chi Minh City, Vietnam
long.hb.nguyen@gmail.com

3Faculty of Computer Science
Université du Québec à Montréal

201, Avenue du President-Kennedy, Local PK 4150, H2X 3Y7 Montreal, Quebec, Canada
le.ngoc tan@courrier.uqam.ca

4NLP-KD Lab
Faculty of Information Technology

Ton Duc Thang University
No. 19, Nguyen Huu Tho Street, Tan Phong Ward, District 7, Ho Chi Minh City, Vietnam

∗Corresponding author: tranthanhphuoc@tdt.edu.vn
5Faculty of Information Technology

Ho Chi Minh City University of Food Industry
No. 140, Le Trong Tan Street, Tay Thanh Ward, Tan Phu District, Ho Chi Minh City, Vietnam

huunt@cntp.edu.vn

Received October 2017; accepted January 2018

Abstract. This paper reports the use of word-level linguistic factors to a neural model
for named entity recognition tasks. Several word-level linguistic factors, such as lemmas,
word clusters, part-of-speech tags, and syntactic chunk tags, were combined in embedding
layers. These factors were incorporated into a bidirectional recurrent neural model. The
experiments showed that our proposed method obtained a better performance with a sig-
nificant gain compared to a baseline model. Adding these linguistic factors allowed the
neural model work better in case of data sparseness or language ambiguity problems.
Keywords: Named entity recognition, Neural networks, Linguistic factors

1. Introduction. Named entities (NEs), especially person names (PER), location names
(LOC), and organization names (ORG), have a very important role in many natural lan-
guage processing (NLP) applications (e.g., information extraction, information retrieval,
and machine translation). NE recognition (NER) is not only a fundamental task but also
one of the most challenging tasks in NLP research area. Since 1995, there have been
many NER systems developed for many languages [1] with the domination of supervised
learning methods such as support vector machine (SVM) [2] and conditional random field
(CRF) [3].

NER by using neural network models has received much attention in recent years be-
cause these models have shown remarkable results and improvements over conventional
NER models [4]. These models usually take advantages of using long short term memory
(LSTM) [5] models which improve recurrent neural network (RNN) [6] models by their

375



376 H. NGUYEN, L. NGUYEN, T. LE, P. TRAN AND H. NGUYEN

ability to capture long sequence context of sentences. Recent neural NER methods [4, 7, 8]
captured the context of a sentence in both directions of the sentence using forward and
backward LSTM models. Their methods are called bidirectional LSTM (B-LSTM) and
have shown significant improvements in NER tasks. There were methods which tried to
adapt convolutional neural network models [9] or CRF algorithms [4] to B-LSTM models.
Collobert et al. proposed a CNN model [10] which can learn proper characteristics of
words to automatically extract features with a CRF layer on the top. A similar archi-
tecture was introduced in [11] by adding more spelling features. It was later improved
with character-level embeddings [4]. An architecture that used a stack of LSTM layers
was also presented in [4]. The above methods used B-LSTM layers as a key part in their
architecture augmented with some features such as pre-trained word embedding layers
and dropout layers. Even these B-LSTM models have shown promising results, they are
lack of ability of using linguistic information for surface words. The additional linguistic
information can help to resolve language ambiguity or data sparseness problems which
usually occur when training data are not large enough. This idea is inspired by one of
previous successful methods in machine translation [12], where the model incorporates
various linguistic annotations for the surface level words.

This paper presents a novel method to incorporate additional linguistic factors at word
level to a B-LSTM neural network model for the English NER task. We experimented
with four word-level factors including lemmas, word clusters, part-of-speech (POS) tags,
and syntactic chunk tags. The experiments illustrated that not only the combination
of these factor but also each individual factor significantly improves the B-LSTM model
performance with impressive results on an English data set. Our main contribution is to
find a best method that is able to represent the linguistic factors in word representation
as well as to input the factors into the B-LSTM neural network model to resolve language
ambiguity or data sparseness problems.

This method shows several advantages. Firstly, these linguistic factors are easy to
achieve for different languages. For languages that POS tagging or syntactic chunking
toolkits does not exist, word clusters or word patterns can be used. Then, these factors
can resolve language ambiguity or data sparseness problems. Moreover, these factors are
at word-level and are easy to combine into common word representation.

The remainder of this paper is organized as follows. The proposed method is presented
in Section 2. Then the experiments and the evaluation on the data are reported in Section
3. Finally, Section 4 presents some conclusions and future work.

2. Proposed Method. In this study, we investigate the possibility to integrate linguistic
factors to a neural network model for NER tasks. As an initial work, our purpose is to
find how additional linguistic factors can resolve data sparseness and language ambiguity
problems in a specific B-LSTM model. Assume that we have a sentence containing N
words; each word is augmented with L linguistic factors. Then, we can express the

sentence as
{({

x(n,l)
}L

l=0
, y(n)

)}N

n=1
.

LSTMs take an input of a sequence of vectors (x1, x2, . . . , xn) and produce an output
of a sequence of vectors (h1, h2, . . . , hn) to represent the information at each input step.
LSTMs have been designed to incorporate a memory cell which can protect and control the
cell state. They use several gates to control the amount of information from the previous
states which should be forgotten and the information from the inputs which should be
updated to the memory cell [13]. There are many variants of LSTM implementations. In
this paper, we reuse the implementation of Lample et al. [4]:

it = σ (Wxixt + Whiht−1 + Wcict−1 + bi) (1)

ct = (1− it)⊙ ct−1 + it ⊙ tanh (Wxcxt + Whcht−1 + bc) (2)



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.5, 2018 377

ot = σ (Wxoxt + Whoht−1 + Wcoct + bo) (3)

ht = ot ⊙ tanh(ct) (4)

where σ is the element-wise sigmoid function, and ⊙ is the element-wise product. ct and
ot are the cell state and the output at the step t, respectively.

Figure 1 illustrates an LSTM cell in an LSTM neural network. In Equation (1), it is a
sigmoid layer to decide which values are updated. xt is the input value of the cell at an
input step. ht−1 and ct−1 are the hidden state and the cell state of the previous step. In
Equation (2), ct is where the LSTM cell decides what previous information to forget and
what new information should be added to. In Equation (3), ot is a sigmoid layer which
decides what parts of the cell state should be outputted. Finally, in Equation (4), ht is the
decided output which is taken from the multiplication between ot and the tanh function
of the cell state. Wxx and bx in the equations are parameters of the LSTM network, which
are needed to learn from training data.

Figure 1. An LSTM cell

A B-LSTM which contains a forward LSTM and a backward LSTM operates on a

sequence in forward and backward directions, respectively. If
−→
hj is the summary repre-

sentation of a word at position j-th from the left of a sequence,
←−
hj will be the summary

representation of that word starting from the right of the sequence. It means the combi-

nation of ht =
[−→
hj ,
←−
hj

]
summarizes the representation of the whole sequence.

Figure 2 shows the architecture of our proposed model with integrating linguistic factors
to the B-LSTM model. At the beginning, the input layer is a concatenation of several
embedding layers (i.e., L layers) encoding the linguistic factors to word vectors. It means
that these embedding layers are word, lemma, word cluster, pos, chunk embedding layer
which are trained separately on each factor. This can help to improve our NER model
performance when these embedding layers are pre-trained with large corpora. At each
input step, word vector, lemma vector, cluster vector, pos vector and chunk vector are
concatenated to establish a common vector (i.e., an input vector). Secondly, these input
vectors are inputted into the forward LSTM layer and the backward LSTM layer. Because

an LSTM summarizes a sequence by reading one symbol at a time,
−→
hj of the forward LSTM

summarizes the sequence up to the j-th word beginning from the first word and
←−
hj of

the backward LSTM summarizes the sequence up to the j-th word beginning from the

last word. In other words, a context dependent vector ht =
[−→
hj ,
←−
hj

]
together summarizes

the whole input sequence. As a result, the prediction of an NE label has the context
information of the whole input sequence instead of having only a small context information
due to the limit of context window size in traditional classifiers (e.g., SVM, and CRF).



378 H. NGUYEN, L. NGUYEN, T. LE, P. TRAN AND H. NGUYEN

Figure 2. Our neural network based named entity architecture

Eventually, these context vectors are inputted to a dense layer which is a regular densely-
connected neural network layer with a softmax activation function to produce tagging
scores. Because the output of the softmax function represents a categorical probability
distribution, the label which has the highest tagging score is assigned to the word.

3. Experiments.

3.1. Training configuration. We used Keras1 library to implement all our experiments.
The baseline was a simple B-LSTM model with an embedding layer. All neural models
were configured with 128 embedding layer dimensions and 100 hidden layer dimensions.
For the linguistic factors, we used 64 embedding layer dimensions to encode each linguistic
factor including word lemmas, word clusters, POS tags, and syntactic chunk tags. The
word lemmas and word clusters were collected by NLTK toolkit2 and Brown Cluster3,
respectively.

To train our neural networks, we used stochastic gradient descent (SGD) with a fixed
learning rate of 0.01. The batch size was 32 and the number of epochs was 200. The
brown cluster size was 100.

For evaluation of our neural networks, we used the CoNLL script4. To test the statistical
significance, we used the bootstrapping resampling method [14] to measure the significant
level (p < 0.01) of F-score differences between the neural models.

3.2. Data sets. We conducted our experiments on CoNLL-2003 English dataset5. Be-
cause the dataset already contains POS tags and syntactic chunk tags, we only need to
add word lemmas and word clusters factors. For the training step, we used the training
set containing 14,985 sentences. We evaluated on the testa and testb testing set. Table 1
provides statistics on the dataset.

1https://keras.io/
2http://www.nltk.org/
3https://github.com/percyliang/brown-cluster
4http://www.cnts.ua.ac.be/conll2002/ner/bin/conlleval.txt
5http://www.cnts.ua.ac.be/conll2003/ner/



ICIC EXPRESS LETTERS, PART B: APPLICATIONS, VOL.9, NO.5, 2018 379

Table 1. Statistics of the English dataset

Dataset #tokens #types #sentences
train 204,562 23,624 14,985
testa 51,573 9,966 3,464
testb 46,624 9,485 3,682

The dataset contains columns separated by a single space. Table 2 illustrates linguistic
factors in an English sentence. The first item on each line is a word, the second a lemma,
the third a word cluster, the fourth a POS tag, the fifth a syntactic chunk tag and the
sixth the NE tag. The NE tag is one of classes including PER, LOC, ORG, or MISC
(Miscellaneous).

Table 2. Example of linguistic factors

word lemma word cluster pos chunk NE
Only Only 011000111 RB I-NP O
France France 111001 NNP I-NP I-LOC
and and 0011110 CC I-NP O
Britain Britain 111001 NNP I-NP I-LOC
backed back 0110011011 VBD I-VP O
Fischler Fischler 0110100 NNP I-NP I-PER
’s ’s 001110 POS B-NP O
proposal proposal 01010111 NN I-NP O
. . 0010 . O O

3.3. Results. As mentioned previously, the aim of the tests was to evaluate the effec-
tiveness of integrating linguistic factors to a B-LSTM model. For that reason, we used
a pure B-LSTM model as a baseline. This section presents our comparisons for different
experiments on English NER.

Table 3 shows the scores reported in F1 score. It is clear to realize that either the indi-
vidual factor or the combination of factors will improve the performance of the B-LSTM
model. The word lemma factor reduced the data sparseness problem in an inflectional lan-
guage such as English. Other remaining factors resolved the language ambiguity problems.
We observed that the combination of all the factors gave us a biggest improvement in over-
all performance of (+7.49, +10.74). For each factor, the POS factor gave us a particular
increase of (+4.46, +8.05); the word cluster factor marked an increase of (+2.80, +5.60),
while the chunk factor resulted in a difference of (+1.72, +1.36) and finally the lemma
factor resulted in an increase of (+1.13, +1.38).

Even these factors helped to overcome the data sparseness and language ambiguity
problems, they could not resolve the difficulty in classifying NEs to their right classes. For

Table 3. NER results on the English dataset

Models testa testb
B-LSTM (baseline) 74.41 64.92
B-LSTM + lemma 75.54 66.30
B-LSTM + word cluster 77.21 70.52
B-LSTM + pos 78.87 72.97
B-LSTM + chunk 76.13 66.28
B-LSTM + all factors 81.90 75.66



380 H. NGUYEN, L. NGUYEN, T. LE, P. TRAN AND H. NGUYEN

example, sometimes, a person name can be used to indicate a location or an organization.
In the test set, Charles de Gaulle was manually tagged as an LOC name but the model
predicted Charles in that location phrase as a PER name.

4. Conclusion and Future Work. Prior work has indicated the effectiveness of using
B-LSTM models in NER tasks. However, these studies have not focused on the advantages
of linguistic factors which can help to solve the language ambiguity and data sparseness
problems. In this paper, we studied the importance of additional linguistic factors in
a B-LSTM model. We found that in all cases, adding either a linguistic factor or a
combination of linguistic factors substantially increases the performance of a B-LSTM
model. This study, therefore, proves the benefits of adding linguistic information to a
neural network model in NLP research area. In addition, these factors used in our study
are easy to establish via existing toolkits. Most notably, this is the first study, according
to our knowledge, to investigate the effectiveness of incorporating linguistic factors to a
neural network for the English NER tasks.

However, in this paper, we only integrated the linguistic factors to embedding layers
by concatenating linguistic vectors. In the future work, we will investigate other possible
methods to integrate more effectively these factors. Besides that, we will also examine
the possibility of applying additional layers such as CNN layer, CRF layer, or dropout
layer into our proposed method.

REFERENCES

[1] D. D. Palmer and D. S. Day, A statistical profile of the named entity task, Proc. of the 5th Conference
on Applied Natural Language Processing (ANLC’97), Stroudsburg, PA, USA, pp.190-193, 1997.

[2] C. Cortes and V. Vapnik, Support-vector networks, Machine Learning, vol.20, no.3, pp.273-297,
1995.

[3] J. D. Lafferty, A. McCallum and F. C. N. Pereira, Conditional random fields: Probabilistic models
for segmenting and labeling sequence data, Proc. of the 18th International Conference on Machine
Learning (ICML’01), San Francisco, CA, USA, pp.282-289, 2001.

[4] G. Lample, M. Ballesteros, S. Subramanian, K. Kawakami and C. Dyer, Neural architectures for
named entity recognition, HLT-NAACL, 2016.

[5] F. A. Gers, J. A. Schmidhuber and F. A. Cummins, Learning to forget: Continual prediction with
LSTM, Neural Comput., vol.12, no.10, pp.2451-2471, 2000.

[6] C. Goller and A. Kchler, Learning task-dependent distributed representations by backpropagation
through structure, Proc. of IEEE International Conference on Neural Networks, pp.347-352, 1996.

[7] J. P. C. Chiu and E. Nichols, Named entity recognition with bidirectional LSTM-CNNs, CoRR,
http://arxiv.org/abs/1511.08308, 2015.

[8] Y. Yao and Z. Huang, Bi-directional LSTM recurrent neural network for Chinese word segmentation,
CoRR, http://arxiv.org/abs/1602.04874, 2016.

[9] O. Kuru, O. A. Can and D. Yuret, Charner: Character-level named entity recognition, The 26th
International Conference on Computational Linguistics, Proc. of the Conference: Technical Papers,
Osaka, Japan, pp.911-921, 2016.

[10] R. Collobert, J. Weston, L. Bottou, M. Karlen, K. Kavukcuoglu and P. Kuksa, Natural language
processing (almost) from scratch, J. Mach. Learn. Res., vol.12, pp.2493-2537, 2011.

[11] Z. Huang, W. Xu and K. Yu, Bidirectional LSTM-CRF models for sequence tagging, CoRR,
http://arxiv.org/abs/1508.01991, 2015.

[12] P. Koehn and H. Hoang, Factored translation models, Conference on Empirical Methods in Natural
Language Processing (EMNLP), Prague, Czech Republic, 2007.

[13] S. Hochreiter and J. Schmidhuber, Long short-term memory, Neural Comput., vol.9, no.8, pp.1735-
1780, 1997.

[14] P. Koehn, Statistical significance tests for machine translation evaluation, Proc. of EMNLP 2004,
Barcelona, Spain, pp.388-395, 2004.


