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Abstract. Non-negative Matrix Factorization (NMF) can learn local information hid-
den in an object, and is widely applied in the fields of data mining and machine learning.
However, NMF does not always achieve superb performances because the features learned
by using the non-negative constraint are usually non-orthogonal and overlap in seman-
tics. It is still an open research problem to improve the semantic independence of latent
features meanwhile maintaining the interpretability of NMF. In this paper, we propose
a novel NMF, called Sparse Non-negative Matrix Factorization for Independent Feature
Learning (INMF). The L2,1/2 sparse constraint is used in NMF, and cosine similarity of
latent features is taken into account. Therefore, it can effectively enhance the discrim-
ination and the semantic independence of NMF. Thus, we design an objective function
by combining the objective function of traditional NMF and the sparse and consine con-
straint conditions for our proposed method. Subsequently, the iterative updating rules are
conducted by optimizing the new objective function. Experimental results on document
clustering indicate that our algorithm surpasses baseline methods in terms of a set of
evaluations based on real datasets.
Keywords: Non-negative matrix factorization, L2,1/2 sparse, Independent feature learn-
ing, Cosine similarity

1. Introduction. The purpose of NMF is to decompose the original high dimensional
data matrix into two low dimensional data matrices, and the product of the two low
dimensional data matrices approximates the original high dimensional data matrix as
much as possible.

We have an original data matrix X = [x1, x2, . . . , xN ] ∈ RM×N
+ . NMF seeks to decom-

pose X into non-negative basis matrix U = [u1, u2, . . . , uK ] ∈ RM×K
+ and non-negative

coefficient matrix V = [v1, v2, . . . , vN ] ∈ RK×N
+ , where K is the number of latent features.

This can also be written as the equivalent vector formula xj ≈
∑K

i=1 uiVij. Usually, we
have K ≪ min(M, N) for rank reduction and vj are the weight coefficient of the origi-
nal data vector xj on the columns of U . NMF decomposes data matrix into the linear
combination of the basic vectors.

Several cost functions have been used in the literature to measure the quality of NMF.
The main issue is to find the factor matrices (U, V ) that achieve the minimum of the
chosen cost function. Many researchers have worked out improved methods to obtain a
solution to NMF, which can be incompletely divided into constrained NMF, structured
NMF and generalized NMF. Constrained NMF imposed some additional constraints as
regularization to construct loss functions [1-4]. While structured NMF modified the stan-
dard factorization formulations such as weighed NMF [5,6]. Generalized NMF broke
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through the conventional data types or factorization modes in a broad sense [7-9]. How-
ever, the inborn correlations between latent features make the former NMF algorithms be
short of discrimination and increase the difficulty of minimizing loss function. In addition,
the previous NMF algorithms do not take full advantages of the sparsity of matrices and
they neglect the useful information of the correlation between different features.

Sparse feature selection is aimed to apply a variety of sparse models to realizing feature
selection and achieving the sparse data representation. Much works [10-12] have extended
the L1-norm to the Lp-norm (0 < p < 1) for better sparsity. In [13,14], Xu et al. have
concluded when p is 1/2, the Lp-norm, i.e., L1/2-norm has the best sparsity. In [15],
Nie et al. have introduced a joint L2,1-norm minimization on both loss function and
regularization for feature selection. However, L2,1-norm has not good sparsity because it
is based on L1-norm. Recently, Wang and Chen [16] have proposed an idea to extend
L2,1-norm to L2,p-matrix norm (0 < p ≤ 1) so as to select joint, more sparse features;
at the same time, this model has better robustness than L2,1-norm. When p is equal to
1/2, the L2,p-matrix norm has the best performance, so we apply the L2,1/2-matrix norm
model to our new NMF for sparse constraint.

In this paper, we propose INMF that utilizes cosine similarity to improve the indepen-
dent feature learning ability of NMF by reducing the correlations between latent features.
Further, we introduce L2,1/2 sparse constraint into INMF. Thus the semantic informa-
tion in latent features is more distinct and the representations in latent space are more
discriminative. We compare our methods to several baseline NMF models on document
clustering and give the experimental results of our algorithm and other related algorithms
on real dataset. The main contributions of our work can be summarized as follows.

(1) INMF can improve NMF by preventing feature co-adaption with cosine similarity
adopted.

(2) Sparse constraint with L2,1/2-norm on the basic matrix in the feature space is in-
corporated as the additional condition, which can not only achieve the sparse data
representation and simplify the calculation, but also enhance the local learning ability
and robustness of the algorithm.

The rest of the paper is organized as follows. In Section 2, we discuss related work.
Section 3 introduces our algorithm. Experimental results on clustering are presented in
Section 4. Finally, Section 5 concludes our work and provides suggestions for future work.

2. Related Work. Research efforts have been made to improve NMF from various per-
spectives, like constrained NMF [1-4], structured NMF [5,6] and generalized NMF [7-9].
The most common constrained NMF is sparse NMF that the sparseness constraint is help-
ful in improving the uniqueness of the decomposition along with enforcing a local-based
representation, which is typically measured via L1-norm [1]. Orthogonal NMFs achieve
good performances because the result of orthogonal NMF corresponds to a unique sparse
area in the solution region, which learns the most distinct [2]. Graph regularized NMF
(GRNMF) improved performance in tasks like document and image clusterings, and it
modeled the manifold structure by constructing a nearest neighborhood graph on a scat-
ter of data points [3,4]. Weighed formulations are commonly modified versions of learning
algorithms, which can be utilized to emphasize the relative importance of different com-
ponents. Weighted NMFs are popular in collaborative filtering and clustering tasks as
they incorporate prior knowledge into loss function according to connections of instances
[5,6]. Generalized NMF like semi-NMF [7], non-negative tensor factorization [8], and
non-negative matrix-set factorization [9] are proposed for tasks with complicated and
heterogeneous information sources.

A special method dropout NMF prevents the co-adaption of hidden units by changing
the update process of latent features [17]. Since the stationary co-occurrence is broken,
hidden units can still learn from others but with less dependence. Inspired by these, we
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propose a new NMF that works by minimizing cosine similarity between latent features.
In the following section, we find that NMF can be improved by breaking the correlations
between latent features. Hence we incorporate cosine similarity into NMF. Moreover,
L2,1/2 sparse constraint on the factor U is used to select the most discriminative sparse
features.

3. Methodology. The purpose of NMF is to let the product of the coefficient matrix
U and the basic matrix V approximate the original data matrix X as far as possible.
Formula of NMF is as follows:

X ≈ UV T (1)

We should minimize the squared Euclidean distance loss function:

L =
∥∥X − UV T

∥∥2

F
, s.t. U ∈ RM×K

+ , V ∈ RK×N
+ (2)

In this paper, we adopt the squared Euclidean distance loss function:

L =
∥∥X − UV T

∥∥2

2
= Tr

(
XT X

)
− 2Tr

(
XT UV

)
+ Tr

(
V T UT UV

)
(3)

∥ · ∥22 is the squared L2-norm and Tr(·) represents the trace of matrix. The iterative
updating rules of gradient descent algorithm are shown as follows:

umk ← umk

(
XV T

)
mk

(UV V T )mk

, vkn ← vkn

(
UT X

)
kn

(UT UV )kn

(4)

3.1. Sparse non-negative matrix factorization for independent feature learning.
NMF can be formulated as a linear neural network as the input xi is represented by a
linear combination of base vectors in U :

xi = Uvi =
∑

k

vkiuk (5)

uk is the k-th latent feature. The innate correlation between latent features influences
the optimization process and increases the difficulty of minimizing loss function; unfortu-
nately, it cannot be avoided.

Since latent features are correlated in NMF, co-adaption is a state that the updates
of {uk}Kk=1 stop at a saddle point, where L can still be further optimized until it reaches
the max iteration. Researchers tried to avoid co-adaption by conducting many separate
NMFs on the same dataset with different initialization strategies, which bring more com-
putationally expensive [18]. Therefore, we propose a new NMF that in each iteration
latent features will gradually be uncorrelated directly by minimizing cosine similarity be-
tween latent features. In such a case, uk will be independently updated and the influence
of correlations will be reduced to the least extent.

3.1.1. Sparse constraint. Although NMF can reduce the dimensionality of the original
data, how to select discriminative features and achieve the sparse representation of data
is still complex. Therefore, sparse constraint with L2,1/2-norm on the basic matrix U is
incorporated as the additional condition. It can be written as:

∥U∥2,1/2 =

(
m∑

i=1

∥Ui∥1/2
2

)2

(6)

3.1.2. Cosine similarity measure. Theodoridis and Koutroumbas [19] defined cosine sim-

ilarity measure as Scosine(x, y) = xT y
∥x∥∥y∥ where ∥x∥ =

√∑l
i=1 x2

i and ∥y∥ =
√∑l

i=1 y2
i are

the lengths of the vectors x and y, respectively. Both x and y are l-dimensional vectors.
Since cosine measure is easy to interpret and simple to compute for sparse vectors, it is
widely used in text mining and information retrieval [20].
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3.1.3. Iterative updating rules. Taking the above factors into account, we define the objec-
tive function of sparse non-negative matrix factorization for independent feature learning
as follows:

L = ∥X − UV ∥2F + θ∥U∥1/2
2,1/2 + α∥V ∥2 + β

∑
i,j

cos(Ui, Uj) (7)

θ, α, β are non-negative which can balance the several terms and the weight of the last
reconstruction error term. θ, α are the sparse parameters and β is the cosine similarity
parameter.

In order to optimize this objective function, we can translate the objective function in
Formula (7) as follows:

L = Tr
(
XT X

)
− 2Tr

(
XT UV

)
+ Tr

(
V T UT UV

)
+ α

(
Tr
(
V T V

))
+ 4θTr

(
UT QU

)
+ βTr

(
UT US

) (8)

Q = [qij] ∈ Rm×m is a diagonal matrix. We can calculate the i-th diagonal element qij of
the diagonal matrix Q as follows:

qij =
1

4∥Ui∥3/2
2

(9)

In order to avoid overflow, we add a small enough constant ε into the definition of the
matrix Q, so Formula (8) can be rewritten as follows:

qij =
1

4 max
(
∥Ui∥3/2

2 , ε
) (10)

where S = [sij] ∈ Rk×k, we can calculate the elements sij of the matrix S as follows:

sij =
k∑
i,j

cos (Ui, Uj) (11)

In order to obtain the iterative updating rules of the basic matrix U and the coefficient
matrix V , we should take the partial derivatives of L:

∂L

∂U
= −2XV T + 2UV V T + 8θQU + 2βUS (12)

∂L

∂V
= −2UT X + 2UT UV + 2αV (13)

The iterative updating rules of the basic matrix U and the coefficient matrix V are
shown as follows:

Umk ← Umk

(
XV T

)
mk

(UV V T + 4θQU + βUS)mk

(14)

Vkn ← Vkn

(
UT X

)
kn

(UT UV + αV )kn

(15)

3.2. Convergence analysis. In this section, we analyze the convergence of our algorithm
and prove the objective function in Formula (7) decreases monotonically in the iterative
updating rules (14) and (15).

We analyze the convergence of the iterative updating rule (14).

Lemma 3.1. [21]

m∑
i=1

(∥∥gt+1
i

∥∥1/2

2
−
∥∥gt+1

i

∥∥2

2

4 ∥gt
i∥

3/2
2

)
≤

m∑
i=1

(∥∥gt
i

∥∥1/2

2
− ∥gt

i∥
2
2

4 ∥gt
i∥

3/2
2

)
(16)
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Proof: From Lemma 3.1, we have:

m∑
i=1

(∥∥U t+1
i

∥∥1/2

2
−
∥∥U t+1

i

∥∥2

2

4 ∥U t
i ∥

3/2
2

)
≤

m∑
i=1

(∥∥U t
i

∥∥1/2

2
− ∥U t

i ∥
2
2

4 ∥U t
i ∥

3/2
2

)
(17)

We define a function as follows:

H(U, V ) = Tr
(
XT X

)
− 2Tr

(
XT UV

)
+ Tr

(
V T UT UV

)
+ α

(
Tr
(
V T V

))
+ βTr

(
UT US

) (18)

Since ∥U∥1/2
2,1/2 =

∑m
i=1 ∥Ui∥1/2

2 , we can obtain the following inequation:

H t+1 + θ

m∑
i=1

∥∥U t+1
i

∥∥2

2

4 ∥U t
i ∥

3/2
2

= H t+1 + θ
∥∥U t+1

∥∥1/2

2,1/2
+ θ

m∑
i=1

( ∥∥U t+1
i

∥∥2

2

4 ∥U t
i ∥

3/2
2

−
∥∥U t+1

i

∥∥1/2

2

)

≤H t + θ
m∑

i=1

∥U t
i ∥

2
2

4 ∥U t
i ∥

3/2
2

= H t + θ
∥∥U t

∥∥1/2

2,1/2
+ θ

m∑
i=1

(
∥U t

i ∥
2
2

4 ∥U t
i ∥

3/2
2

−
∥∥U t

i

∥∥1/2

2

) (19)

Combining (15) with (18), we can get the following inequation:

H t+1 + θ
∥∥U t+1

∥∥1/2

2,1/2
≤ H t + θ

∥∥U t
∥∥1/2

2,1/2
(20)

Therefore, the objective function in Formula (6) decreases monotonically in the iterative
updating rule (14).

Nextly, we analyze the convergence of the iterative updating rule (15).

Definition 3.1. G(h, h′) is an auxiliary function for F (h) if the following conditions are
satisfied.

G(h, h′) ≥ F (h), G(h, h) = F (h) (21)

Lemma 3.2. If G is an auxiliary function, then F is nonincreasing under the update

ht+1 = argmin
h G
(
h, ht

)
(22)

Obviously, it can prove F (ht+1) ≤ G (ht+1, ht) ≤ G (ht, ht) = F (ht) and F (h) is conver-
gent.

Lemma 3.3.

G
(
V, V t

)
= F

(
V t
)

+ F ′ (V t
) (

V − V t
)

+
UT UV + αV

V t

(
V − V t

)2
(23)

is the auxiliary function for F (V ).

Proof: The first-order derivative and second-order derivative on F (V ) are F ′(V ) =(
−2UT X + 2UT UV + 2αV

)
kj

, F ′′(V ) =
(
2UT U + 2α

)
kk

, so the Taylor expansion of

F (V ) can be measured as follows:

F (V ) = F
(
V t
)

+ F ′ (V t
) (

V − V t
)

+
(
UT U + α

) (
V − V t

)2
(24)

Since (
UT UV

)
kj

=
∑

h

(
UT U

)
kh

V t
hj ≥

(
UT U

)
kk

V t
kj

(αV )kj = αV t
kj

we have
UT UV + αV

V t
≥ UT U + α

so that G (V, V t) ≥ F (V ).
According to the simultaneous Equations (22) and (23), we know G (V t+1, V t) is the

local minimum of (23) and V t+1 is the corresponding local minimum point.
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G (V, V t) is the auxiliary function for F (V ), so F decreases monotonically by Formula
(15).

4. Experimental Results.

4.1. Datasets. The corpus is fetch 20newsgroups, which is a collection of about 20,000
news documents, partitioned into 20 different groups. It was originally collected by Lang
Ken and contains 18,846 documents and only 1,000 words after we preprocess were re-
served in this paper. Each document is converted to a vector xt ∈ R1000, leading to the
data matrix X ∈ R18846×1000. We apply the standard NMF, sparse NMF (SNMF), and
our new algorithm to this X, for comparative study in terms of the Precision and the
Recall.

4.2. Experimental settings.
Evaluation Metrics. In this paper, we use three evaluation metrics, i.e., Precision,

Recall, and F1-score to estimate the clustering performance of the above clustering algo-
rithms.

The formula is as follows:

Precision =
nij

nj

Recall =
nij

nj′
(25)

Among them, nij is the number that documents in a known class i belong to the cluster
j, nj is the number of documents in the known class i, n′

j is the number of documents in
the cluster j.

The F1-score considers both the precision p and the recall r of the documents to compute
the score:

F1-score =
2× Precision × Recall

Precision + Recall
(26)

Parameter Settings. As to fetch 20newsgroups dataset, the parameters α, β, θ for
new NMF are selected from region {0.01 ∼ 0.1}, and the balance parameters α, β of
regularization terms for SNMF are the same as above. To verify the performances on
different data sizes, K is set to {5, 10, 15, 20} respectively.

4.3. Clustering results. Table 1 shows the comparisons of two baseline methods with
our method on fetch 20newsgroups evaluated by Precision, Recall, and F1-score respec-
tively. The best performances in three versions of methods are boldfaced. It shows that
the new method performs better than conventional methods regardless of K although
the preponderance is not obvious. It demonstrates the effectiveness of preventing the
co-adaption of latent features. Besides, the overall performances decrease with K because
a larger dataset with more topics is more difficult for clustering.

Table 1. Clustering performances on fetch 20newsgroups

K
Precision Recall F1-score

NMF SNMF INMF NMF SNMF INMF NMF SNMF INMF
5 0.199 0.205 0.223 0.198 0.206 0.222 0.198 0.206 0.222
10 0.100 0.102 0.109 0.099 0.101 0.108 0.099 0.101 0.108
15 0.064 0.066 0.089 0.064 0.066 0.088 0.064 0.066 0.088
20 0.051 0.050 0.059 0.051 0.049 0.058 0.051 0.050 0.058
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(a) NMF (b) SNMF

(c) INMF

Figure 1. Convergence curves of NMF, SNMF and INMF on fetch 20newsgroups

4.4. Parameter selection and convergence analysis. We compare the convergence
curves of conventional NMF, SNMF as well as our algorithms on the dataset with K = 5,
when p is is set to {0.1, 0.3, 0.5, 0.7, 0.9} respectively. In Figure 1, the number of iterations
is used as X-axis and the objective function value is used as Y-axis. Considering both
clustering performance and time consumption, we set the most appropriate parameter as
mentioned above. We only show the result when p is a value for each algorithm. All
methods tend to converge within 20 iterations. On the fetch 20newsgroups, the numbers
of iterations of NMF and SNMF are about 18 and 19 respectively, and the objective
function tends to be stable. However, the INMF can converge at 15 iterations. This is
because more latent feature is uncorrelated in each iteration, and the accumulated effect
leads to a better performance.

5. Conclusion. In this paper, we analaze how the correlations among latent features in
NMF affect performance and propose INMF called sparse non-negative matrix factoriza-
tion for independent feature learning which can not only utilize cosine similarity of vectors,
but also effectively learn local information of the objectives. In INMF, latent features are
updated by minimizing cosine similarity of it in each iteration. Co-adaption is effectively
prevented in the proposed algorithm, so latent features are more definite and discrimina-
tive. In addition, L2,1/2 sparse constraint is incorporated as the additional conditions in
the NMF, which can make the basic matrix with a good sparsity. From all the experi-
mental results above, we can make a conclusion that our algorithm is with encouraging
performance on both Precision and Recall. In the future, we will explore the INMF
with other loss functions and variations. The new method will be put forward to deal
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with other applications in different domains, such as video processing, natural language
processing.
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