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ABSTRACT. We are engaged in developing a swimming motion coaching system by using
a sensor device. One of the requirements of the system is the process of automatically
estimating and dividing the section of swimmer’s motions (such as stroke and turn)
from the sensor data. In this paper, we proposed a method of estimating the section of
each swimming motion in four swimming styles (front crawl, backstroke, breaststroke and
butterfly). A classifier of swimming motions based on decision tree was constructed by
learning data. As a verification in the generalization ability of the classifier by test data,
F-measure was > .713 for all swimming styles. We also estimated the start and end
points of the section of swimming motions. The estimated mean errors of the start and
end points of turn in all swimming styles were < .488 seconds (except for backstroke)
and < .514 seconds, respectively. From the pattern recognition point of view, we found
that we could classify the features of stroke and turn in four swimming styles. Howewver,
from the user’s point of view, we should aim to achieve much higher accuracies.
Keywords: Sports engineering, Sensor, Machine learning, Decision tree

1. Introduction. Swimming is a sport that Japanese players have been acquiring many
medals in international competition, and it is also expected that medals including gold
medals will be acquired in the future. The Ministry of Education, Culture, Sports, Science
and Technology (MEXT) designates it as “target A”, which means “a sport that Japanese
players can expect to have many medals including gold medal”. MEXT is supporting the
training and strengthening of players [1]. It is important to improve technics of such
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advanced players, but it is also important to elevate the beginners and intermediate
players to the advanced players.

It is desirable to improve technics of the players by estimating the performance such as
strokes, turns, and start diving (hereinafter called “swimming motions”). The teaching
and evaluation by a coach are common. It is sometimes difficult to exactly estimate and
evaluate the swimming motions of the player underwater. It is possible to estimate the
swimming motions by using motion capture system. However, since such system is an
expensive and large scale device, it is not realistic for the beginners and intermediate
players to easily use it to evaluate the performance of their swimming motions.

From these backgrounds and the point of view of sports engineering, we have proposed a
swimming motion coaching system [2] by using only one compact and waterproofed sensor
that can measure 3-axial acceleration and angular velocity (hereinafter called “sensor
data”). We attach one sensor on the back of the waist (see Figure 1(a)). It would be
desirable to use many sensors but we considered that it could be easily used for beginners
and intermediate players and could reduce uncomfortable feeling. First, from only sensor
data, the system automatically determines which swimming style (front crawl, backstroke,
breaststroke and butterfly) is performing. Next, it automatically detects the sections of
each swimming motion. Finally, it estimates and provides the information such as speed
and lap time during detection of each swimming motion to the coach and/or players.

To develop the systems, it is necessary to solve some issues: (1) automatic classification
of four swimming styles, (2) automatic classification of swimming motions and estimation
of the sections of swimming motions, (3) evaluation of the performance of swimming
motions such as speed and lap time, and (4) how to provide information to the coach
and/or players. Omae et al. [3] proposed a classifier of four swimming styles with good
accuracy and at a high speed. In this paper, suppose that we know which swimming styles
the players are performing, we focus on issue (2). Jensen et al. [4] attached a sensor to the
back of swimmer’s head. From the acquired data, they quantified the features of strokes
and turns, and constructed a classifier by a linear regression model. The feature values
used were mean, standard deviation, variance, energy, kurtosis, skewness, maximum and
minimum value of 3-axial acceleration and angular velocity. In their result, the turn was
detected with good accuracy. However, the start and end points of the turn were not
determined with enough accuracy.

In this paper, by using the machine learning technique and only sensor data, we con-
struct a classifier and propose a data processing method of estimating the section where
each swimming motion is performed.

The paper is organized as follows. In Section 2, we give an overview of the experiment
and data processing. In Section 3, we explain the method of the construction of classifier
and estimation of swimming motions section. In Section 4, the experimental results and
discussion are presented. Section 5 is devoted to a summary.

2. Overview of Experiment and Data Processing. To construct swimming motion
classifier, learning data are required and test data are also required to verify generalization
ability of the constructed classifier. In this section, we describe the experiments to acquire
data necessary for the construction of classifier as well as the processes for constructing
learning and test data.

2.1. Experiment of data collection. We conducted experiments with 19 subjects (16
males, 3 females) of university students who belong to swimming clubs in the university.
The attributes of the subjects were 19.5 4+ 1.7 years of age, 169.6 + 7.0cm in height,
64.2 £ 5.6kg in weight, and 13.1 £4.1 years of swimming history. The sensor we used is a
waterproofed 9-axis wireless motion sensor with a weight of 20g, 67mm x 26mm x 8mm
size, made by Sports Sensing Co., Ltd. (former Logical Product Co., Ltd.) [5]. This sensor
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FIGURE 1. Status of the subject during the experiment

has built in an acceleration sensor (+5G) and an angular velocity sensor (£ 1500dps),
and it can record each element in memory of the sensor with sampling frequency of 100Hz.
Setting of the sensor position and the axis with the positive direction of arrow direction
of acceleration and angular velocity sensors are shown in Figure 1(a). Here, X,.. denotes
X-axis acceleration, X,,, denotes X-axis angular velocity, and Y and Z axes are the
same. In order to compare sensor data waveforms with actual swimmer’s motion, we took
movies at 30fps using Sony’s HDR-CX720 [6] from the poolside.

We instructed subjects to select two swimming styles that were good at four swimming
styles, and to swim a lap (50m) in the 25m pool with full power without start diving.
We acquired the data for two swimming styles from 19 subjects. However, there were 5
missing data because of falling of the sensor and the defect of taking movies. The total
number of acquired data was 33 (for 12 swims in front crawl, 11 swims in butterfly, 5 swims
in breaststroke and 5 swims in backstroke). We divided these data into learning data and
test data for each swimming style. Since it is necessary to learn the common features
of swimming motion for each swimming style and to remove the individual features of
swimming motion, it is better to have as much learning data as possible. Thus, the
distributions were for front crawl: 8 learning data and 4 test data, butterfly: 6 learning
data and 5 test data, breaststroke: 4 learning data and 1 test data, backstroke: 3 learning
data and 2 test data, respectively.

2.2. Definition of swimming motion. It is necessary to clear the definitions of each
swimming motion to add the motion tags to the sensor data. Swimming motions strongly
depend on swimming styles. However, if we know which swimming styles the subjects are
performing, we can depict the swimmer’s state transition diagram of swimming motions
in Figure 1(b). From Figure 1(b), in this paper, we define the swimming motions as Table
1.

2.3. Data processing. In order to learn swimming motions from the sensor data, it is
necessary to add the motion tags of swimming motions to be an objective variable for
each time. Therefore, we synchronized the acquired sensor data and the movies. After
that, based on the definition of swimming motions shown in Table 1, the motion tags
were added to the sensor data.

To understand human motions, instead of using the raw sensor data, we generally use
the converted values that represent the features of objects (hereinafter called “feature
values”) [7]. The sliding window method [7, 8] is one of the conversion methods. By using
the sliding window method, the start and end points of human motions can be detected
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TABLE 1. Definition of subject’s motions

Motion

Motions Definition
tags
Stand-by 0 State before the start and after swimming.
Preparation h State from the start of trial until the start of stroke.
of stroke
Normal stroke Sn Series of motions from the start of thrusting one’s hands

in water to end of motions are defined as one stroke. n
(=1,2,3,...) denotes the n-th normal stroke.

Start and s*, s** | State of the stroke immediately after start of stroke (s%.,.;),
end stroke before the start of turn (sf,4), after the end of turn (s:,,)
and just before the goal (s’;). * and ** show 25m in the

first half and 25m in the second half, respectively.
Turn u State of turn. Definition of start timing of turn for each

swimming style: front crawl is lowering head, backstroke is
twisting waist, and breaststroke and butterfly are touching
the wall. The end timing of turn is until the start of stroke
in each swimming style.
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FIGURE 2. Schematic view of the sliding window method

sensitively. For this reason, we use the sliding window as the conversion method in this
paper. The schematic view of the sliding window method is shown in Figure 2. First, the
feature values are calculated by using the data within a range of window width w from
starting point M. The time stamp of the starting time M is added to these calculated
feature values. Then, the start point M is slid by the slide width p: M = M + p, and
the feature values are calculated in the data range that is the window width w. These
processes are repeated until the end of data.

The processed feature values are shown in Table 2, where Mean denotes mean value; Var
variance; Skew skewness; Kurt kurtosis; Max maximum value; Min minimum value; Ent
frequency domain entropy; Med median. We decided these feature values by referring
to the previous research [3]. We calculate these 8 kinds of values for the three-axial
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TABLE 2. Adopted feature values

Definition |Acceleration | Ang. velocity || Definition |Acceleration|Ang. velocity

J r J r J r J r
]_ Xacc 25 Xang ]_3 Xacc 37 Xang

a; = Mean(r)| 2 Yiee |26 Yang a; = Max(r) |14 Yy |38 Yang
3 Zacc 27 Zang 15 Zacc 39 Zang
4 Xacc 28 Xang ]_6 Xacc 40 Xang

aj = Var(r) |5 Yiee 129 Yang aj =Min(r) |17 Yaee |41 Yang
6 Zacc 30 Zang 18 Zacc 42 Zang
7T Xace |31 Xang 19 Xaee (43 Xang

a; = Skew(r) | 8 Yiee 132 Yang a; = Ent(r) (20 Y. |44 Yang
9 Zace |33 Zang 21 Zaee |45 Zang
10 Xaee |34 Xang 22 Xaee |46 Xang

a; = Kurt(r) |11 Yaee |35 Yang aj =Med(r) |23  Yiee |47  Yang
12 Zae |36 Zang 24 Zaee |48 Zang

accelerations and angular velocities and adopt them as feature values a; (7 = 1,...,48)

by which swimming motions are classified.

To use the method, it is necessary to set the parameters of window width w and slide
width p. It is desirable that the time for dividing the sensor data is the time for one cycle
of swimming motions. Therefore, to focus on strokes, we set window width w as the mean
time taken for one stroke for each swimming style. As the result from learning data, the
window width wy for each swimming style & became front crawl (k = Fr): 1.15s, butterfly
(k = Bu): 1.09s, breaststroke (k = Br): 1.31s, backstroke (k = Ba): 1.27s, respectively.
We also set slide width p as 1/100s (= 1 sample) so that it can respond sensitively to
switching of swimming motions.

It is also necessary to set the objective variable for the calculated feature values. It is
natural to set the majority of swimming motion tag in the data range w as the objective
variable of the feature values. Then, we can create data set of feature values (explanation
variables) and swimming motion tag (objective variable).

3. Construction of Classifier and Estimation of Swimming Motions Section.

3.1. Classification algorithm. We use a decision tree as a classifier of swimming mo-
tions. In the decision tree, we use information entropy to search for the effective classi-
fication trees. To construct a classifier, classification tree creation processing of optimal
feature values is repeated by using the learning data. If this process is repeated until the
objective variable is completely classified, the classification accuracy of the learning data
is increased. However, there is a possibility that over-fitting may lead to a decrease in gen-
eralization ability. Especially, in analysis of motions, noise depending on the individual
feature differences tends to occur. If classifier reacts sensitively to its noise and creates
classification rules, it becomes over-fitting. So it is necessary to optimize the learning
depth from the viewpoint of improving generalization ability and suppressing over-fitting.
In the decision tree, learning depth can be indirectly manipulated by adjusting the min-
imum number of samples per leaf node (hereinafter called “MLS”). Therefore, by doing
cross validation (hereinafter called “CV”) in the learning data, we search for MLS that is
optimal for constructing a classifier.

3.2. Examination on the improvement of generalization ability. MLS is searched
by using CV in order to construct a classifier which is excellent in generalization ability and
not over-fitting. Especially, we use the Leave-one-subject-out Cross Validation (LCV) [9].
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LCV constructs the classifiers by using the B — 1 trial data out of learning data for B
trial data. Then, accuracy of the classifier is evaluated by using the data of remaining one
trial data which is not involved in construction as a test data. This process is repeated
B times so that each data set becomes a test data. Since LCV evaluates the accuracy of
classifiers constructed without using the test data, it is possible to verify the robustness
of classifiers against the unknown data. In order to search for the optimum MLS in this
verification, a classifier with MLS m changed from 1 to 1000 in each data set is constructed
and accuracy evaluation is performed for each different MLS. The most accurate MLS is
set as the optimum MLS for each swimming style.

If we set that positive case is turn and negative case is stroke, we can count TP},
TNy, FPB, and FN;7, for MLS m, v-th verification result in swimming style k. Here,
TP is a number of classified turn as turn, TN is a number of classified stroke as stroke,
FP is a number of classified stroke as turn, and F'N is a number of classified turn as
stroke, respectively. In the data of one trial, the ratio of the number of sample data of
stroke and turn is generally more in stroke data. In order to evaluate the classification
accuracy in the same way, we normalize:

TN = o TN, FP = of FP,  aff, = oiko * TG (1)
kv — Oék:,v ko kv — ak,v ko ak,v = m m
TNy, + FP[,

where aj, is the normalization constant that makes the data number ratio of stroke and
turn uniform. We calculate the classification accuracy by:
A THT, + TN, pr TR,
B TP + TN+ FPm 4+ FNpS M TP 4+ FPm

(2)

TP 2P R},
o = : R - T (3)

’ TP,:?U + FN, ,’g}v ' P,ZLU + RZ?U

We also calculate the mean value of F-measure in MLS m:
By,
1

F'= — " 4
k Bk UZI k,v’ ( )

where By is the number of trials B in swimming style k. The optimal MLS mit for
classifier in swimming style k is obtained:
mit = argmax F}". (5)
m
3.3. Estimation of swimming motions section. Since in a practical system it is re-
quired that the information, such as speed and lap time, is provided after the classification
of stroke and turn, the correct estimation of the swimming motions is important.

Since the feature values are characterized by the start time, which is explained in Section
2.3, the results of the classification are also characterized by its time. Therefore, based
on the classification result, we can detect the change point of the swimming motions.
There may be some miss-classifications of the swimming motions. In order to exclude it
from the estimation of the start and end points of the turn, we consider the section where
the classification results of stroke/turn continue during a few samples as the actually
stroke/turn section.

4. Results.

4.1. Classification accuracy of learning data and test data. By using learning data
of each swimming style, we construct the classifiers of the swimming motion (positive case:
turn and negative case: stroke), for each swimming style. The By is equal to the number
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of learning data in each swimming style, which was explained in Section 2.1. The obtained
optimal MLS m® discussed in Section 3.2 and the classification results of the constructed
classifiers are shown in the left side of Table 3. The classification accuracy is evaluated
by accuracy Ay, precision P, recall Ry, and F-measure Fj. The evaluation results show
that all swimming motions are almost correctly classified: F-measure Fj, > .886.

TABLE 3. Classification accuracy of the constructed classifier

Style | Optimal MLS Learning data Test data
Fr 42 978 992 963 .978 |.785 .975 .585 .731
Bu 152 949 990 .906 .946 | .790 .947 .615 .746
Br 473 903 .959 .842 .897|.816 .951 .668 .784
Ba 556 896 974 813 .886|.769 .943 .573 .713

Since the learning depth is adjusted by CV, there is a possibility that the similar
accuracy will be obtained for unknown data. On the other hand, they just represent
classification accuracies of learning data and do not guarantee classification accuracies of
unknown data. Therefore, we need to verify the classifier’s generalization performance for
test data that are not involved in learning.

The classification results of the test data are shown in the right side of Table 3. Although
accuracies and recalls are not so high (Ay ~ .769 and Ry ~ .573), precisions are still high
(P, > .943). F-measures of all swimming styles are Fj, ~ .713.

4.2. Estimation of swimming motions section. We estimated the start and end
points of turn based on the results of the classification of the test data. From the estimated
results U'** and the changing point of the original motion tag U*? for subject i data of
the turn start and end points in swimming style k, we calculated:

ki _ ki

end end

Estart = Ustart - Ustart ) Eend = : (6)
The average value EX, . and E* | and its standard deviation Sd(E%, ), SA(E~ ) were
calculated for swimming style k. The results are shown in Table 4. Note that since there

is only one subject of the breaststroke in test data, we only show the mean values.

TABLE 4. Estimation error of the start and end point of turn motion

Style Estimation error
k Eégtart [S] Sd(Eéctart) Eelfnd [S] Sd(‘E«fnd)
Fr 403 179 283 167
Bu 488 201 514 376
Br .240 — 170 —
Ba 1.55 430 405 205

From Table 4, it can be seen that both the starting point and the end point of the turn
are largely deviated. This is because the behavior of elongation before and after kicking
the wall is confused with motion of stroke. In order to avoid the confusion between this
stroke and the extension during turn it is considered that it is necessary to separate
turn and elongation motion from the definition of turn motion. Although it is necessary
to classify new motion of elongation, this definition narrows target motion section of
learning and can adopt feature values specialized for classifying motion of elongation as
classification rules.
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4.3. Discussion. We discuss first the generalization ability. In the process of construct-
ing classifier, in order to obtain the optimal learning depth that did not become over-fitting
for each swimming style, MLS calculated by CV for each swimming style was used. Gen-
erally, for unknown data, the effective classifier could be made by the optimal learning
depth. However, the F-measure of the test data was much lower than that of the learning
data. For constructing classifiers, it is desirable that the error of learning model is low and
the classification accuracy of the learning data is high. This means that learning model
with low bias and low variance is desirable. Since the decision tree is learning model with
low bias and high variance, in this paper, we tried to constrain the over-fitting of classifiers
by CV and reduce the variance. However, the results shown in Table 3 showed that we
could not obtain the desirable results. Therefore, in order to improve the generalization
ability, it is necessary to adopt a data processing method and/or learning model that can
further reduce the variance.

In the motion tags defined in Table 1, there was the case that all data samples were
defined as turn from s} 4 until s% ;. In the definition of Table 1, the turn motion before
kicking the wall and the motion of elongation immediately after kicking the wall were also
defined as the same turn. In the swimming styles with less shaking of the trunk during
strokes, it is possible that the motion of elongation and stroke are confused. We have to
change the definition of the swimming motions.

In this paper, we show that we can classify the features of stroke and turn in four
swimming styles. From the pattern recognition point of view, the precision rate should
be determined as good result. However, as mentioned in Section 1, the system to be
constructed in the research [2] aims at feeding back swimmer’s performance in real time
to swimmers. Therefore, from the user’s point of view, we should aim to achieve much
higher accuracies.

5. Summary. In this paper, we used the decision tree as learning model and constructed
a classifier that learned features of swimming motions by converting sensor data into
feature values. For constructing classifier, we set the optimum learning depth by LCV.
After that, by using the constructed classifier, we estimated the sections in which each
swimming motion is performed, and estimated the accuracy.

As the result of verifying the generalization ability of the classifier by test data, it was
possible to construct a classifier that captured the features for each swimming motion,
although F-measure decreased by more than .113 than that of learning data classification
in each swimming style. As the result of estimating section of the turn from the data,
the estimated mean errors of the start and end points of turn in all swimming styles
were < .488 seconds (except for backstroke) and < .514 seconds, respectively. Then, we
discussed a cause of such classification accuracy and estimation error from the viewpoint
of classifier creation algorithm and swimming motion definition.

It is possible to construct classifiers that classify swimming motions with the accuracy
that can use practical system, but the accuracy has to be improved by solving the problems
which we found in this paper. In the future, we plan to improve the estimation accuracy
by introducing a data processing method and/or learning model that further reduces
variance. We will also plan to redefine the optimal window width and swimming motion.
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